C. @ocenv, C. Pyoonvgh

COMPLEX SYSTEM DESIGN WITH DESIGN LANGUAGES:
METHOD, APPLICATIONS AND DESIGN PRINCIPLES'

S. Vogel', S. Rudolph®

Institute for Aircraft Design, University of Stuttgart, Stuttgart, Germany
!Samuel. Peter.Vogel@gmail.com, *Rudolph@ifb.uni-stutigart.de

Abstract

Graph-based design languages are presented as a method to encode and automate the complete design
process and the final optimization of the product or complex system. The Unified Modeling Language
(UML) is used to represent the design language which models the design process. A design language
consists of a vocabulary (i.e. the digital building blocks) and a set of rules (i.e. the digital composition
knowledge) along with an executable sequence of the rules (i.e. the incremental digital encoding of the
design process). The rule-based mechanism instantiates a central and consistent global product data struc-
ture (the so-called design graph). Upon the incremental generation of the abstract central model, the do-
main-specific engineering models are automatically generated, remotely executed and their results are
fed-back into the central design model for subsequent design decisions or optimizations. The design lan-
guages are manually modeled and automatically executed in a so-called design compiler. Up to now, a
variety of product designs in the areas of aerospace (satellites, aircraft), automotive (space frame struc-
tures, automotive cockpits), machinery (robots, digital factory) and consumer products (coffeemakers,
exhaust systems) have been successfully accelerated and automated using graph-based design languages.
Different design strategies and mechanisms have been identified and applied in the automation of the
design processes. Approaches ranging from the automated and declarative processing of constraints,
through fractal nested design patterns, to mathematical dimension-based derivation of the sequence of
design actions, are used. The existing knowledge for a design determines the global design strategy (i.e.
top-down vs. bottom-up). Similarity-mechanics in the form of dimensionless invariants are used for eval-
uation to downsize the solution for an overall complexity reduction. Design patterns, design paradigms
(i.e. form follows function, or function follows form) and design strategies (divide and conquer) from
information science are heavily used to structure, manage and handle the design complexity.

Key words: design languages, design automation, design method, design principles, design ontology.

Citation: Vogel S., Rudolph S. Complex System Design with Design Languages: Method, Applications
and Design Principles. Ontology of designing. 2018; 8(3): 323-346. - DOI: 10.18287/2223-9537-2018-8-
3-323-346.

Introduction

The digitization of industrial processes, e.g. in the context of Industry 4.0, makes new design
processes possible and necessary. The automation of the product development process promises a
considerable increase in efficiency. Especially designs and decisions of the very early concept phase
have a very large influence on the later life cycle costs of the product [1]. The development of mod-
ern and more competitive products requires to go even closer to the limits of what is physically fea-
sible in order, for example, to squeeze the last bit of weight advantage or efficiency out of a product
or system. Modern products are integrating typically multiple physical domains (mechanics, ther-
modynamics, electronics, logistics, ...) as well as a lot of system levels consisting of sub-systems or
parts that mutually build on each other. The combination of both, multiple domains together with a
number of system entities, results in a high level of design and process complexity that has to be
handled. Digitized design processes can be used to cope with this complexity and to find more op-
timal product designs in even earlier project phases. This digitization mainly comprises the comput-

! The article is published in expanded content on the recommendation of the Program Committee of the XX International Conference
"Complex Systems: Control and Modeling Problems" (CSCMP-2018). Samara, Russia. September 3-6, 2018.

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 323

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOmMowu A3blKo06 nNPOEKMUpPOSaAHUsl ...

er-aided synthesis of designs (CAD) including the automated generation of functional validation
calculations and simulations (structural mechanics, fluid mechanics, controls...). In fact, a virtual
product design shall be automatically generated and optimized based on given product requirements
to optimally meet the performance targets.

In this paper graph-based design languages are presented as a method to implement such digital
and re-executable representations of (conceptual) design actions. At first, the method of graph-
based design languages itself is explained. The method is proven for more than fifteen years and has
been mainly developed in the Similarity Mechanics Group of the Institute for Statics and Dynamics,
which moved now to the Institute of Aircraft Design at the University of Stuttgart. Second, scien-
tific applications are shown as well as an early industrial stage application. Finally, a collection of
design principles to handle the complexity in product design is presented that has been identified in
the scientific work with design languages over the past years.

1 Method

The method of graph-based design languages [2] is a further evolution step of generative, com-
puter-based design synthesis methods [3]. These design synthesis methods can be divided in to
string-based, shape-based and graph-based design representations. From the viewpoint of the au-
thors, graph-based design languages belong to the most generic and abstract means of knowledge
representation across different domains due to its graph representation. Alternative computer-based
synthesis methods such as L-Systems or Shape Grammars [3] define a rule set on elementary shapes
(vocabulary) which is recursively called in a production system to generate more complex shapes.
Graph-based design languages expand this concept by generalizing the vocabulary to conceptual
objects together with an adaptive procedural rule sequence, the so-called production sequence.
Along with these approaches, there are other solutions in formalizing the process of designing and
creating automatic design systems based on formal knowledge worth noting [4-9].

1.1 Philosophical Motivation

Rudolph gives a philosophical motivation for the design language concept in [10]. First it is ob-
served that during the product design process different areas of concept, each with different levels
of knowledge, are traversed. It is distinguished between the first area called ‘believe’ which covers
uncertain design targets as simplicity, aesthetics or adequacy. The second concept is ‘ability’ which
covers more concrete but still not exact formulated design aspects as Design for Manufacturing,
Design for Assembly, Design for Recycling. The third concept covers exact aspects and is called
‘knowledge’. It contains physical formulas and other reproducible, mathematically formalizable and
provable laws and know-how. Figure 1 shows a schematic design process starting from an idea that
is hosted in the concept of ‘believe’. During the iterative design process different solution concepts
are derived from the given idea and product embodiments are synthesized as product variants. The-
se variants are validated towards specified requirements. The iterative procedure is conducted until
a variant meets the requirements and becomes the final product, see Figure 1.

In order to formalize and digitalize this design process all three aspects have to be represented
in a single, unified description. Rudolph proposes a language-based representation that is closely
related to natural languages which are a convenient candidate as they are able to cover all three
conceptual areas presented above. This language-based representation is called a graph-based de-
sign language. The linguistic aspects of natural languages are reinterpreted here in the engineering
application in the following way [2].
= Syntax of the design language:

All designs that can be combinatorically represented by the classes in the class diagram.

324 N3(29/2018, v.8, Ontology of Designing

C. @ocenv, C. Pyoonvgh

= Semantics of the design language:
All designs that are technically or physically meaningful (e.g. it may depend of the application
whether a car with six wheels makes sense, no collisions between parts and components, ...).

» Pragmatics of the design language:
The designs that are optimal with respect to given requirements and boundary conditions.

. i&eas},7ﬁ solutions \ RO
(\ knowledge | "
validation . synthesis '

.l variants ‘/ ab:(:ty /

product®-)

; b.believe_

Figure 1 - Embedded areas of concept that are visited during an iterative product design process, starting from an idea.
Figure reproduced from [10]

The linguistic aspects are embedded within each other as the optimal designs (pragmatics) are a
subset of the technically and physically meaningful designs (semantics). These meaningful designs
are at the same time a subset of the designs that can be created or represented in the design lan-
guage. But this is in fact the underlying research hypothesis of design languages that design is com-
putable and that the optimal designs as a subset within the generated meaningful designs may be
found via a design evaluation method [11].

1.2 Graph-Based Design Language

The following section explains and defines the method of graph-based design language. The
figure 4 shows the main components of a design language in its graph-based representation on one

page.
1.2.1 Unified Modeling Language

For the formal representation and the concrete modelling of the design process the Unified
Modeling Language (UML) is used [12]. The UML’s origin is in object-oriented software engineer-
ing to graphically model and specify object oriented software. Subsets of the UML are used in sys-
tems engineering as the modeling language SysML. The UML provides ready-to-use modeling dia-
grams and tools for the representation of (engineering) ontologies (class diagram and instance dia-
gram) as well as for representing sequential and branched processes (activity diagram) that are used
in graph-based design languages to create a graphical model of a product’s design process. The
original naming of the design languages building blocks was based on linguistics as stated above as
the UML was later introduced as modeling language [13]. The following headers reflect the duality
between the design languages components’ UML nomenclature and the ‘original’ linguistic based
nomenclature in parenthesis.

Using the UML for the representation of the product design process allows a natural integration
of the software domain into the product design process, which is present in most modern products.
Modern products are typically made up of mechanical and electrical parts with a corresponding con-
trol unit that executes at least a product-specific controller software. Therefore software engineering
becomes an integrated and important part of the product development process.

OHTOJIOTHSI MPOSKTUPOBAHUS, TOM 8, %3(29)/2018 325

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOmMowu A3blKo06 nNPOEKMUpPOSaAHUsl ...

1.2.2 Class Diagram (Vocabulary)

The class diagram represents an ontology of the product that is to be designed. The product is
decomposed in to its subsystems, components and even more granular entities that are assigned to
classes. These classes are enriched with parameters that represent e.g. physical or cost variables. In
this way, parametrized objects that are instantiated from classes form the vocabulary of a graph-
based design language instead of words in natural languages. A class diagram is shown in figure 2
top for an exhaust aftertreatment system that reduces pollutants from a combustion engine’s ex-
haust. The class Catalyst is a kind of ExhaustSystem through inheritance. Within the class diagram,
associations can be drawn as links between classes to represent relationships between them. In the
example in figure 2 top, the ExhaustSystem is connected to a CombustionEngine whose exhaust has
to be cleaned and the ExhaustSystem itself is connected with the Environment, where the cleaned
exhaust gas escapes to. This associations define which elements can be linked during an instantia-
tion. Thereby the class diagram represents the (maximal combinatorial) template of the product that
hosts all the information needed during the design process. Inheritance relationships can be defined
between the classes, as is customary in object-oriented modeling. Abstract classes can be defined
that cannot be instantiated. So components and entities can be mapped directly on classes on differ-
ent levels of abstraction and detail.

Equations and constraints between the class parameters can be additionally modeled in the
classes and are processed in an integrated solution path generator [14]. The equation and constraint
network that is built on the instantiation of the classes is automatically solved in the solution path
generator with an integrated computer algebra system. In the UML class definition physical dimen-
sions can be assigned as data types to class parameters. This becomes especially important for the
dimension analysis presented in the design principles section below.

1.2.3 Instance Diagram (Design Graph)

The classes from the class diagram can be instantiated into instances. The instantiated objects
get an unambiguous name and the parameters defined in the class are provided with concrete val-
ues. The instances of associated classes can be linked with each other. The set of linked instances is
called design graph in the context of graph-based design languages (figure 2 bottom). The instanti-
ated objects form the nodes and the links form the edges of the graph. The specific values are stored
in the parameters within each node. Thus, the topology of a product (an alternative name would be
product architecture) can be mapped via the graph and the parametric of a product via the parame-
terization in the nodes. This design graph plays the role of the central data model in the virtual
product design with design languages.

1.2.4 Rules (Grammar)

The engineering entities of the class diagram are rule-based instantiated into objects with spe-
cific parameter values. Graphical rules with a left-hand side (LHS) and a right-hand side (RHS)
define the instantiation as manipulation on the instance diagram. Again, the design instances in the
design graph are linked with each other according to the associations that are defined in the class
diagram. This associations define the possible connection of instances, also called instance patterns,
in the graphical rules. The instance pattern on the LHS of the graphical rule is looked-up in the de-
sign graph and replaced with the instance pattern on the RHS. The first rule is called ‘axiom’ and
has an empty LHS as the design graph is empty in the beginning. The figure 2 center left shows the
axiom rule that introduces the boundary conditions of an exhaust aftertreatment system, which
comprises of a given combustion engine with its specific parameters (not all shown), the environ-
ment and the installation space as STEP geometry file that defines the available space for engineer-
ing the exhaust system. In the ‘axiom’ typically the requirements and given boundary conditions are

326 N3(29/2018, v.8, Ontology of Designing

C. @ocenv, C. Pyoonvgh

defined. The graphical rule in figure 2 center right shows the incremental design step that adds the
main building blocks of an SCR system, DEF Injection and Catalyst, to the initially created in-
stance of the CombustionEngine class.

Class Diagramm

|externally Toaded class ~ ~ !
Idiagram of the CAD plugin

=0

Q Environment
(=] outletPosition: {m,m,m}

—¢ L] ExhaustSystem
[= pressureLoss: Pa

E C bustionEngine
(=] outletPosition: {m,m,m}

|

|

g ouz:e:gfrecti?n: {m,m,m} ‘ [5] absStaticPressure: {Pa} |] PipeElement :

outletDiameter: m D=

(=] exhaustMassFlow: kg/s A Ij | |EELSTEP_ lePath:String ol

[=] exhaustTemperature: K | :

[=] NOxConcentration: kg/kg £ InstallationSpace || |

[=J STEP_ lePath:String : Zf |

|

1| E straightEl t |

| : (=l length: m |

| | = diameter: m T

«Enumeration» E catalyst = DEF Injection |, |

(] Coating [=] diameter: m [=] massFlow: kg/s | Jl

= oxidation_Pt (=] cellDensity: 1/m”~2 (=] diameter: m |=e>?_E€_rn:aI'Ty'_lo_§&_'e§ C-_Ia__SS::z-'

= deNOx_VO5 [=] coating: Coating (=] length: m |diagiam of BeTM interads :
= deNOx_FeZeo z

| | .
=l deNOx_CuZeo e _>iF_'g_ _4i<_ s _!
Production System
Xi

«Interface»
[#) CADpluglIn

«Interface»
(#Icont'Mchncs

: () createCAD () addCFDsim
rh rh

Graphical Rules (if-then scheme)

Rule "Axiom" Rule "SCRsystem"

LHS RHS | LHS RHS
[=] : CombustionEngine [Z] : CombustionEngine [Z] : CombustionEngine
outletPosition={1,0,0} T
- =] : DEF_Injection
empty- O+ Environment massFIow=52.2e-5

outletPosition={1,5,4}

1
[Z] : Catalyst
coating=deNOx_VO5
]

[: InstallationSpace
STEP_ lePath=./space.stp

=] : Environment =] : Environment

Design Graph = Central Data Model (UML instance diagram)

combustionEngine

‘ dEF_Injection [catalyst

environment

cadCreator* *

pipeElement0&) pipeElementl®) pipeElement2() pipeElement3@) pipeElement4

STEPFile instances— inPatch preCatWall catWall postCatWall outPatch
X topoFace0 topoFacel topoFace2 topoFace3 topoFace4
materialGas
massFlowlInle wall0o walll wall2 pressurOutlet
massConcentration
loadCaseStationaryFlow3D —@ @
| porosity part
averageValueAtSlice openFoam — : ._ -
hollowConelnjection* liquidConc* materialLiq"*

Figure 2 - Schematic graph-based grammar of an exhaust system and its main building blocks

OHTOJIOTHSI MPOSKTUPOBAHUS, TOM 8, %3(29)/2018 327

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOmMowu A3blKo06 nNPOEKMUpPOSaAHUsl ...

1.2.5 Production System

The design process itself is then split into an incremental rule sequence. This predefined rule
sequence in graphically modeled in an activity diagram and is called production system. Beside the
graphical rules as building blocks an activity diagram can hierarchically host sub-activities which
are activity diagrams themselves. As third object, interface calls can be modeled that trigger the
execution of engineering applications in so-called process chains that are described in the following
section. The activity diagram in figure 2 top center shows from the left two calls of graphical rules
followed by a two times alternating sub-activity and interface call. As fourth element so-called de-
cision nodes are available to branch the rule sequences in the production system in dependence of
the state of the design graph (figure 3).

. XK «Rule»
£3 SearchCatalystShape
[
‘K «Rule» ‘K «Rule»
@ChooseCylindricalCatalyst @ ChooseSquaredCatalyst

e

Figure 3 — Decision node (rthombus) in the activity diagram to trigger different rules based on the LHS pattern in rule
SearchCatalystShape

With this feature a branching design process can be realized that adaptively and dynamically
reacts on different model states and inputs as different rule sequences can be triggered. In figure 3
one of the two Choose*Catalyst rules is triggered, which differ in the geometric form of the catalyst
that is added to the model. Which of the rules is chosen depends on a parameter in an instance on
the LHS of the SearchCatalystShape rule on the top right in figure 3. In this way adaptive design
sequences can be realized to create a wide variety of different product configurations.

1.2.6 Information Architecture

The figure 4 shows the information architecture that hosts the previous presented elements and
shows their interaction. The class diagram (vocabulary), the rules, as well as the production system,
represent a digital blueprint of the design process, wherein the design knowledge is encoded in the
form of a design language (figure 4 left). The manual modeling of the class diagram, the rules and
the production system is done in a so-called design compiler (further details in the following sec-
tion). On the right side of figure 4 so-called process chains are shown. Process chains represent the
automated creation of engineering models in the design language. This is realized with unidirec-
tional model-to-text transformations between the abstract central model (design graph as UML in-
stance diagram) and the product engineering models as CAD, simulation models, etc. The process
chains extract the required information from the central design graph and create the CAD and simu-
lation models automatically by executing the model-to-text transformations that are stored in the
process chains. The results of the simulations runs are partially fed back to the design graph for in-
fluencing subsequent design rules and operations. Closed-loop optimization as well as adaptive and
self-controlling design processes, using the decision nodes above, can be realized in this way.

This architecture with a central model (“single source of truth”) has multiple advantages. There
are no longer different and/or outdated model versions since upon a model update in the central

328 N3(29/2018, v.8, Ontology of Designing

C. @ocenv, C. Pyoonvgh

model the process chains can be triggered to get an automatic update of all engineering models.
There is no need of model-to-model transformations between each engineering model as all model
updates are done or triggered in the central model with an subsequent update via calling the process
chains. This reduces the number of model-to-model transformations drastically, that are necessary
to have valid models, and drastically reduces the need for tracing and managing model changes.

fff

design language | | design language
(definition and programming) ; | (compilation and execution) CAD
vocabulary FEM +—
production | i | design N design /
system | compiler graph \N
rules 1 3 CFD
i CAS |
Closed Loop:
Optimization

Figure 4 - Information architecture of graph-based design languages

1.2.7 Design Compiler

In analogy to programing languages a design compiler is used for modelling and execution of
the graph-based design languages. The commercially available Design Compiler 43
(https://www.iils.de/) in its Version V2 was used in the applications projects presented below. The
Design Compiler 43 is a standalone application based on the Eclipse IDE that provides the follow-
ing functionalities and tools to model and execute graph-based design languages:
= Qraphical editor to manually model the class diagram (figure 2 top).
= Process chains as engineering plugins in the form of class diagrams for modeling engineering

tasks as CAD geometry creation, simulation model creation (CFD, FEM) and product integra-

tion problems (wiring, piping, packaging,...) that can be loaded into the central class diagram
(figure 2 top right). In this way different ontologies from different engineering areas can be
combined in the central class diagram.
= QGraphical editor to manually model the production system including its sub elements as graph-
ical rules, sub activities and interface calls (figure 2 center).

= QGraphical view of the design graph with filter function to restrict the scope of view to sub pat-
terns (figure 2 bottom).

= Design language debugging mode to execute the rules of the production system step by step
with the possibility to stop during execution.

= Java Rule functionality to execute and use Java code on the design languages execution to ma-
nipulate the design graph code-based, especially useful for complex manipulations that contain
difficult patterns and/or control structures as loops.

The solution path generator functionality is provided by the design compiler as plugin which
solves, first, the equation system modeled in the class diagram in terms of a solution sequence and,
second, passes the found solution sequence to a computer algebra system for solving the equation
system symbolically or numerically if necessary. The bidirectional solution path generator writes
the results back into the design graph as last execution step of the plugin.

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 329

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOmMowu A3blKo06 nNPOEKMUpPOSaAHUsl ...

2 Applications

A broad range of products has been designed using graph-based design languages. From appli-
cations in aerospace [15, 16] through consumer products [17] and off-road machinery components
[18] up to automotive [19], the method has been successfully applied mainly in a scientific context.
The scope of design languages has been prototypically extended up to downstream stages of the
life-cycle by generating and designing the digital factory for a product in addition to the product
itself [20]. Additional work has been done in the implementation of algorithms to automate engi-
neering tasks as routing of cables and wires [16] and the automated creation of pipework in given
installation spaces [21]. These intelligent wiring and piping algorithms become necessary as graph-
based design languages fully automate the design process and therefore need to be able to create an
intelligent integration and interaction of system components in given installation spaces for differ-
ent product architectures.

2.1 Aeronautics: Air Cabin Design

Figure 5 shows results of a graph-based design language that automates the layout design of an
aircraft cabin [22, 16]. Beginning with the requirements, the designer can (manually) define the
seating requirements based on a number of ratios. A ratio might define how many passengers share
the same lavatory in a certain class. The aircraft main dimensions are as well given as a require-
ment. The proposed seating configuration within the aircraft’s hull can be additionally manually
edited in a graphical editor that appears during the execution of the design language. The subse-
quent design process is schematically shown in figure 5. At first, an initial CAD model of the air-
craft cabin is created (figure 5 top left) based on the previously found or manually edited seating
configuration. From this CAD model the available routing space for cable routing is rule-based ex-
tracted. Due to the previous automated CAD model generation, the information of the position, size
and shape of the area, which is accessible for routing, is explicitly available in the central data mod-
el (figure 5 top mid). In the following step the equipment boxes are positioned in the available rout-
ing space. This is done via a parametrization along the aircrafts main dimensions which can be later
varied in an optimization run (figure 5 top right). Afterwards, the equipment boxes are subtracted
from the routing space and the remaining space is meshed for conducting collision detections for
the subsequent cable routing (figure 5 left bottom). Then the search algorithm, a modified A*-
algorithm which is available as engineering plugin in the design compiler, is executed to identify
the cable routes within the routing space (figure 5 mid bottom). Finally, collision-free CAD models
of the cables are created which are used for an evaluation of the aircraft cabin configuration. Evalu-
ation metrics comprise of cable length and weight as well as electromagnetic compatibility. Addi-
tional constraints in the aircraft cable design, as minimum distances between the cables of redun-
dant systems, can also be taken into account by the design compiler’s integrated routing functionali-
ty.

Using the graph-based design language reduces the time needed for an aircraft cabin layout
from many weeks and months to a few hours. The complexity of the interaction of the coupled sys-
tems and components is handled through the interplay of the production system and the design rules
together with the intelligent algorithms to solve the integration tasks of positioning and wiring the
electrical components. Different aircraft cabin designs can thus be automatically evaluated and op-
timized in terms of total weight, cable length and wiring compatibility and validity [22]. Figure 6
shows a final cable routing together with the comparison of the results of two cabling variants with
a different number of distribution boxes (SPDB). The diagrams on the right are showing the differ-
ent resulting cable weights for the different networks and subsystems.

330 N3(29/2018, v.8, Ontology of Designing

C. @ocenv, C. Pyoonvgh

initial CAD
geometry

variable
obstacles

generate
routing
space

meshed for later parameterized

define boundary

conditions collision checks o, equipment boxes
build grid search algorithm post processing
SeasEssaee! Vil o
I
)

iri8 ’ |

* =3 SV)
collision checks modified A* algorithm collision free CAD geametry

with exact cable length

Figure 5 - Aircraft cabin design with automated generation of electric and climate system generated
with a design grammar [22]

design trade: 8 versus 4 SPDBs | e
!/{_ =y | "’"V [, . L
= : / } IR = V \ o 1
5 : . l.ll,l,l,l,l‘ I

v/

Figure 6 — Final aircraft cabin cable configuration in overhead area. Diagrams on the right show a schematic compari-
son of two cable variants (8 vs. 4 distribution boxes) in terms of cable weights [22]

2.2 Aerospace: Satellite Design

Figure 7 shows the result and intermediate steps of a graph-based design language for creating
a small satellite [15]. The design language starts from a given mission that defines payload, target

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 331

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

orbit, energy and information demand of the payload as requirements. The design process of creat-
ing an optimal satellite for a given requirement set starts in [15] by solving the so called enumera-
tion problem. In the enumeration problem different system topologies are synthesized and analyzed
as different system topologies can match the requirements. The design for a given system topology
is created rule-based in the design language presented in [15]. For each system topology the config-
uration problem has to be solved which comprises of integrating the subsystems and components,
selected during solving the enumeration problem, in the available space (the so-called packaging).
At last, the integration problem has to be solved, which means that the functionality of the whole
systems has to be checked under all relevant loads and physical conditions. For conducting this in-
tegration test the corresponding simulation models, as well as the cables routes of the satellite, have
to be generated. These steps have to be executed and repeated many times on different modeling
levels of detail to properly resolve the couplings between the systems [15].

Figure 7 shows the synthesis of the FireSat satellite [15]. The rule set creates a complete virtual
mockup based on the given requirements (figure 7 top row). The design language includes the au-
tomated creation and dimensioning of the control systems as well as the validation. Critical figures,
such as the mass, energy and momentum balance, are calculated and balanced. A mission-related
communication system is chosen based on the mission figures. All critical subsystems are selected
and in the subsequent configuration step spatially arranged (i.e. packaged) and finally, with the pre-
viously mentioned routing algorithm, connected by wires (figure 7 bottom right). The integration of
the components is validated for the defined orbits in terms of thermal loads arising from the incom-
ing sun light as well as heat sources from components and systems (figure 7 bottom left).

Figure 7 - Satellite design with graph-based design languages. Reproduced from [15]

Figure 8 shows the intermediate result of the FireSat design language for solving the enumera-
tion problem of the communication system. For the given requirements transmission power and
transmission data rate (speed) the best mass of each communication system topology can be seen.

Each combination of a transmitter and an antenna presents a unique topology and has its own
mass to power to speed characteristic as shown in figure 8 in different colors in the central plot.
During the execution of the design language this characteristic figures can be automatically created.
Then the optimal communication system for a given requirements can be chosen based on this char-
acteristic map. In cases where a chosen (sub-)system topology has still variable system parameters,
a parametric heat map as in figure 9 can be used to find an optimal solution and to gain insight into

332 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

the system’s behavior. The sensitivities of the calculated system characteristics values (vertical ax-
is) are shown in dependence of given design parameters (horizontal axis).

+Q+
O\t =

7 10E2
Mass [kg] kel / /
0 /// //',
52 / 10E4
|/ / Speed [kbit/s]
10 £
o 10E6

100

Power [W]

1000

Figure 8 — Enumeration problem: The mass of different communication system topologies (colors) for required trans-
mission power and speed. There are 3 antenna system variants (vertical)
and 2 transmission amplifier variants (horizontal) [15]

beamwidth

diameter

carrierFrequency

Antenna

gainAntenna

mass

mass

power

mitter

powerAmplifier

carrierFrequency
downLinkRate
gainAntenna

gainGroundAntenna

TTC - System | Trans-

lossSpace

maxDistance

mass

% %
Trans- “% ¢
Antenna | mitter TTC - System

Figure 9 — Heat map showing the dependencies between the calculated communication system characteristics (vertical)
and the given design parameters (horizontal) of a single communication system topology [15]

OHTOJIOTHSI MPOEKTUPOBAHUS, TOM 8, %3(29)/2018 333

HpoexmupoeaHue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

2.3 Manufacturing: From Design to Digital Factory

Graph-based design languages have also been proposed to bridge the gap between product de-
sign and manufacturing [20]. Design languages can support to close the current inconsistencies be-
tween the product design and the manufacturing engineering. Both disciplines are usually using
different models, applications and data formats, even if both areas are closely coupled as changes in
the product design can have a significant impact on the manufacturability in a given production
infrastructure and vice versa. Arnold et al. implements a graph-based design language in [20] that
automates the design of an aircraft panel. A plugin that automatically creates a digital factory for a
given design is added. Using this approach in both, the design and the manufacturing planning, a
central data model is shared in the form of the common design graph that extends over both inter-
woven domains.

Figure 10 shows four assembly configurations of an aircraft panel for finding the optimal con-
figuration with the minimal turnaround time [20]. With this approach, the optimal digital factory
setup can be found for a specifically designed aircraft panel to optimize the manufacturing process
in the virtual reality before building the real factory. The design language in [20] provides a fully
automated design stage of an aircraft panel based on given aircraft hull geometries and shapes. The
simulation and optimization of the manufacturing process is realized with a corresponding design
compiler plugin to the domain specific DELMIA digital factory software (www.3ds.com). The digi-
tal factory model is generated out of the central data model, the digital factory simulation is trig-
gered and the turnaround times as well as information on the manufacturability of the panel are re-
turned. Figure 11 shows the simulation of the coating process of the aircraft panel that is also creat-
ed out of the design language’s central data model. With this coating simulation critical coating
parameters as local thickness and application efficiency can be optimized by a variation of the spray
paths and spray configurations. It was thus possible to show in an exemplary manner that produc-
tion processes and their process parameters can also be optimized with design languages [20].

mirror sequence of clip mounts (841,833 sec) mirror sequence of frame mounts (942 014 sec)

Figure 10 — Different digital factory assembly configurations with turnaround times [20]

334 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

Figure 11 — Simulated coating process of the aircraft panel. Courtesy Fraunhofer IPA [20]

This approach is being further developed in a currently running project (“ZAFH Project Digital
Product Lifecycle”). The project tries to expand the applicability of graph-based design grammars
to the whole product life cycle. Among other things, production lines in automotive applications are
created [23] especially with regard to costs, and their virtual commissioning is visualized within a
virtual reality environment generated automatically in the design language [24]. The website of the
project provides additional links to further publications (https://dip.reutlingen-university.de/).

2.4 Mechanical Engineering: Exhaust Aftertreatment Design

Finally, figure 12 shows results of a design language for the automated creation and functional
optimization of SCR (selective catalytic reaction) exhaust aftertreatment systems that reduce the
emissions of internal combustion engines [18, 21]. At the beginning, a combustion engine is given
in terms of mass flow and exhaust temperature as well as raw emissions and emission target. An
installation space is also given, where the exhaust aftertreatment has to fit in (blue box figure 12 top
right) as 3D CAD STEP model. First, the catalyst is analytically dimensioned. Then a CAD model
of the catalyst housing is created based on the previously calculated catalyst size. The catalyst box
is automatically positioned in the installation space. This is done with a Dijkstra shortest path algo-
rithm that identifies a path between the engine’s exhaust outlet and the exhaust target tail pipe posi-
tion at the interface to the environment. This path is searched within the installation space under the
constraint of having a maximum distance to the installation space’s walls. Installation positions for
the catalyst box, that have a sufficient distance to the wall, are filtered from this path. In the next
step a geometrical constraint pipework, made-up of only standardized pipe bends with predefined
bend angles (eg. 45° and 90°), is created to connect the exhaust system components with the engine
and the environment [21]. This pipework (figure 12 left) is identified within its own optimization
runs that are nested within the production system of the overall design language that creates the
whole exhaust system (figure 12 top right). The pipework can be created including CAD detailed
mountings and connectors between the pipe elements.

Based on the pipework and the finally positioned catalyst box the overall CAD model is
merged. This CAD model is automatically meshed and a fluid simulation is created to determine the
emission reduction efficiency as well as the pressure loss of the system (figure 12 center bottom). A
finite element simulation to evaluate the thermal expansion of the system is created and executed as
well (figure 12 center top). The whole design language is integrated into a design of experiments
(DoE) and optimization framework to conduct a design space exploration and to determine the Pa-
reto-front as best possible trade-off between competing design targets (e.g. pressure loss and emis-
sion reduction efficiency). Figure 12 shows the results of a DoE run at bottom right. Each point in
the plot represents one synthesized exhaust aftertreatment system with its characteristic evaluation
figures pressure loss (horizontal axis) and outlet emissions (vertical axis) that both have to be min-
imized. The Pareto front is drawn as a line through those configurations for which there are no bet-
ter configurations in both optimization targets. The system was proven to scale very well on high
performance clusters. Thousands of variants could be created and evaluated within a few days up to

OHTOJIOTHSI MPOEKTUPOBAHUS, TOM 8, %3(29)/2018 335

Hpoexmupoeaﬂue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

weeks. With this approach the physical limits of a given exhaust aftertreatment requirement set
could be determined as Pareto front which is a very useful and valuable information, especially in
an early project phase. The Pareto front gives an indication of the maximum system efficiency that
can be achieved due to the physical limits for a given set of boundary and starting conditions (in-
stallation space, engine, ...).

generic physics
modelling physical conditions
independent of simulation software

absoluteStaticPressure = 15|

) : MassFlowinlet
massFlow = 0,5kg/s
temperature = 673k
turbulenceintensity = 0.1

Figure 12 — Results of a graph-based design language for developing SCR exhaust aftertreatment systems in given in-
stallation spaces. Bottom right: results of DoE optimization runs with two conflicting optimization targets (horizontal:
pressure loss, vertical: outlet emissions) with the resulting Pareto front. Reproduced from [18, 21].

upscaling through parallelization

4 weeks 1day 1day

1 optimization 1 optimization M optimizations
[roc]

evolution step

genetic algorithm GA step

(GA)

D -

~
N
o
(@]
o
c

GA step GA step

@)
@)

GA step 0 GA step M o GA step

GA step

O

Ceonfign) +++ (confign]
GA step
O GA step e

etc.

GA step

O
O

2
a
o
2
|

Figure 13 — Upscaling of design languages integrated into DoE/optimization runs.

The very good scalability of the design languages on HPC (high-performance computing) in-
frastructures could be demonstrated using the example of the design of exhaust aftertreatment sys-
tems. Figure 13 schematically shows the principle of upscaling the design process by executing the

336 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

genetic optimization(s) in parallel. The design language, which calculates a configuration based on
a set of given requirements, is executed within a genetic optimizer. The configurations of the gener-
ation - one design language execution per configuration - can now run in parallel on an appropriate
number of CPUs.

In the example in figure 13, this allows the optimization process to be reduced from several
weeks to one day if the CPU number is correspondingly increased. There are no parallelization
losses because each design language calculates an isolated configuration with corresponding input
parameters, such as pipe diameter or dosing positions. This can be even further scaled up by a paral-
lel execution of different optimization scenarios. The maximum runtime of the optimizations de-
pends then only on the available computing power, since the entire design and validation process of
the product is digitally mapped in the graph-based design language and can be re-executed as re-
quired without any manual intervention.

3 Design Principles

Different design strategies and mechanisms have been identified and applied in the automation
of the design processes. Some principles have been identified by working on the explicit scientific
problem of handling the complexity of engineering design and working on an engineering design
theory. Others just emerged in application-centered design language projects as by-product.

3.1 Top-Down and Bottom-Up

The work in [25] proposes to distinguish between top-down and bottom-up designs. The defini-
tions in [25] can be directly quoted: “In the bottom-up approach it is attempted to achieve a higher
level functionality by systematically combining basic building blocks into assemblies.” A bottom-up
design occurs especially in domains where only limited knowledge is available in advance. This
phenomena often occurs in designs with non-linear physics, as fluid flows in the exhaust system
example presented above, where small changes in geometry can produce significant changes in the
overall physical behavior (e.g. flow separation). Figure 14 shows this approach schematically on the
left side. The basic building blocks are combined to form assemblies that are able to fulfill higher-
order functions and requirements. The systematical recombination is usually done in a kind of evo-
lutionary approach, for example using a genetic optimization algorithm. This approach has a very
high level of computational complexity, but it is able to produce new and creative solutions.

bottom-upapproach top-down approach

[
% g leads to a tree-
2 [requirements] pill like design
Evolutionary and 0 = process with
repetitive design % - 2 increasing
process: [[abstract product function] o element detail
0
ytrial and error” ﬁ o and number
. . w
with many design |8 [solution principles] o] alor.\g pre-known
iterations. o OB designrules.
£ o,
_Q —
3 (_building block / embodiment |
(8]

Figure 14 — Different design approaches according to [25]. The top-down approach as well as the design process steps
in the center correspond to the design theory presented in [1]

OHTOJIOTHSI MPOEKTUPOBAHUS, TOM 8, %3(29)/2018 337

HpoeKmupoeaHue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

For the counterpart of the bottom-up design approach the following is stated in [25]: “In the
top-down approach design synthesis ... is beginning with the requirements definition, the evolution
of the design object is constituted out of subsequent decompositions from abstract conceptual de-
scriptions into more detailed functional representations which finally find an embodiment into ma-
terial components.” The presented satellite example is an example for a top-down design where a
priori knowledge is used to synthesize designs directly from the requirements. The right side of fig-
ure 14 shows this approach were the abstract requirements are stepwise decomposed into a final
concrete embodiment. This approach follows the popular design theory that was presented by Pahl
and Beitz in [1]. In a practical and realistic design process both approaches have to be combined as
usually not all engineering problems can be solved using a-priori knowledge. At least the interplay
between the enumeration, integration and configuration problem, as shown in the satellite example
above, requires a bottom-up approach for non-trivial design tasks. This is true even when the sys-
tem selection in the enumeration problem could be done in a top-down manmer based on available
knowledge. Graph-based design languages can implement both: bottom-up and top-down approach-
es.

3.2 Dimensionless Evaluation

Rudolph identifies the evaluation of engineering objects as crucial challenge in the (automated)
design of products [11] as the chosen evaluation method directly influences and determines the out-
come of the product optimization process. Using the Pi-theorem [26] with its dimensionless invari-
ants addresses the three main problems of evaluation: “How can the evaluation of parts and compo-
nents be found and represented? How are partial results aggregated into a single evaluation? How
are the goal criteria structured, arranged and are they complete? [11]. In this sense, a complete de-
scription of a product entity in terms of design parameters combined to dimensionless invariants
forms a valid evaluation: “Any minimal description in the sense of the Pi-theorem is an evaluation™
[11]. This leads to the evaluation pattern shown in figure 15. The description of the engineering
problem (physical equations) has a physical dimension and forms the parameter set (Xi,...,X,). The
physical equations form a description function X = X(xi,...,X,) that is defined on these dimensional
parameters and describe the behavior of the system. Each component and subsystem contributes to
this equation system which is assembled during the design process as components and subsystems
are put together with an increasing level of detail to form the final product. From the fact that fully
similar designs must get the same evaluation, it is concluded that the evaluation has to take place in
dimensionless invariants (my,..., m,). This transition into dimensionless space, according to the Pi-
theorem, ensures that fully similar designs fall within the same evaluation point. The description
function is transformed to the evaluation function N in the same manner. Since all information and
variables, including physical dimensions, are stored in the design languages in the central data mod-
el, dimensionless evaluation parameters can in principle be obtained automatically.

©o
I - X

©3 ©1

<7T17"'77T7n) - ($17"'7x71>

Figure 15 — Evaluation pattern in engineering based on PI-theorem [26]: The product parameters (x;) are (physically)
coupled through the description function X. In the equivalence of description and evaluation, the dimensionless evalua-
tion parameters m; derived from the x; are forming the evaluation function IT [10]. Taken from [11]

338 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

3.3 Declarative Constraint Processing

In the process of designing complex products, consisting of many components, systems and
spanning over multiple physical domains, large equation systems arise from the aggregation of ana-
lytical models that are part of each subsystem and component. Within the classes of the design lan-
guages equations between the class’ parameters as well as between associated classes can be de-
fined. On the execution of the production system the classes are instantiated and the class parameter
values are set during the rule executions. So the equation system is created automatically alongside
and it is stored in the design graph. For getting a fully automated design process the solution of this
equation system needs to be automated. A solution using a so called solution path generator was
proposed in [27]. The solution path generator identifies a sequence along which the equations of the
equation system can be solved. This leads to a declarative processing of the equation system as only
the problem has to be stated in form of the equation system and the solution sequence is internally
determined. As an initial requirement, the given variables must be marked as constant in the design
graph. This is also done in the production system. So the declarative processing of the equation sys-
tem in the solution path generator frees the designer from providing a solution sequence. Different
design scenarios with different set of given variables (“Who determines what?”’) can be realized in
this way.

The resulting ordered equation system is automatically solved in a computer algebra system
that is integrated into the design compiler (see figure 16). In addition, sensitivity analysis can be
automatically executed on the equation system to determine the critical design drivers and main
dependencies within a product design [14]. This design compiler feature was used in figure 9 in the
satellite example presented above.

sub equation system solution path
models (F\(z2,23,2;)=0) (15 aus F3) numerics
\ Fy(z1,23,25)=0 T, aus F,
L3 F3(z2,zj,z)=0 _| solution path L ry aus Fy
algorithm
sub / F(L9y ey Ty) =0 .r.v.aus F
models D ’ o Y & symbolic
unordered ordered

Figure 16 — The algebraic equations from sub models aggregate to a equation system. The solution path generator de-
termines the sequence of equation solution algorithmically. The ordered equation sequence is solved numerically or
symbolically in a computer algebra system. Reproduced from [10]

3.4 Self-Similar, Nested Design Patterns

Kormeier identifies in [28] a generic design pattern as observation from recurring design pat-
terns in the application of design languages. In a first step a design process is identified that is an
“...iterative sequence of design synthesis, analysis and evaluation...” [28]. This reflects the fact
that during the design process usually a design of a component or a subsystem is created, analyzed
using simulations or calculations and finally evaluated based on this results. Then it is checked
whether the requirements, broken down to the component, are fulfilled. If not, then the cycle is re-
peated and, if necessary, changes must be made in an external cycle enclosing the loop under con-
sideration in order to arrive at a solution. Thus, these design cycles are nested within each other and
can be found at the most diverse abstraction and different levels of detail of the design. In this sense
the pattern can be regarded as being self-similar [28]. The generic pattern is called integrated design
pattern and refines the step of design synthesis of the process explained above. It is defined in the
following way: “...The design synthesis itself is subdivided into the definition of requirements, the

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 339

HpOéKI’I’lMpO@GHM@ CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

)

decomposition, the formulation of functional solutions and the combinatorial exploration process.’
Figure 17 shows the integrated design pattern graphically. It unifies the two design approaches pre-
sented above, the top-down and bottom-up approaches, into one pattern. The red line divides the
step of combination (finding solutions) into a bottom-up approach like part and a top-down ap-
proach like part. The red dividing line now shifts in one direction or the other depending on which
design type prevails. The pattern thus provides a template that can be used in the implementation of
design languages as a kind of ideal guideline for structuring the design process.

Requirements assessment

Figure 17 — Integrated design paradigm. Design synthesis as iterative pattern: “...definition of requirements, the de-
composition, the formulation of functional solutions and the combinatorial exploration process... [28].
Taken from [28] and extended.

3.5 Dimension-Based Design Sequence

The paper [18] deals with the problem of splitting the design process into a sequential step-by-
step process. It is shown that in order to find an optimal design the dimensioning and integration of
sub-systems and components has to occur at once within one design step. But this implies that the
design parameters of the components and subsystems that are to be integrated have to be deter-
mined at once. This leads to a very high-dimensional problem which practically can’t be solved in
reasonable time. In general, the parameters have a non-linear behavior and subsets of parameters are
strongly coupled with each other. Usually subsystem dimensioning has to be at least partially con-
ducted in a bottom-up approach as the optimal parameter values cannot be determined in advance.
Therefore it is necessary to split the design process into sequential steps to find a good design in
reasonable time.

Since there are many sequences into which the design process can be divided, a preferred order
of the sequential design tasks is proposed based on the mathematical dimension of the involved
subsystems [18]. When two systems are sequentially integrated, the (common) design parameters of
the lower dimensional system have to be fixed before fixing the design parameters of the higher
dimensional system (“Begin with the system that has less degrees of freedom”). In figure 18 the
concept of design parameters having different degrees of freedom associated with a different math-
ematical dimension is exemplarily illustrated. To explain the concept, the simplified problem of the
installation or integration of the red square box in an installation space with an existing component
(grey square box) is used. The left column a) just shows the two dimensional parameter space of the
installation positions of the red box in the plane. The red shaded area in column b) shows the possi-
ble parameter values without caring for intersections of the two boxes. If the possible parameters
are restricted to the technical meaningful installation positions where the boxes touch each other
one gets the parameter set in ¢) which has now a lower mathematical dimension. Another step down
to a point-shaped parameter set is done in column d) where the set is restricted to the installation
position where the boxes are aligned which is regarded as being particularly advantageous in this

340 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

example. This example shall visualize that in the product design parameter sets with different math-
ematical dimensions occur, depending on their number of parameters as well as on restrictions due
to the context of the design (technical meaningful, ...).

X2 X2 X2 X2

X4 X4 X4 X4

Figure 18 — Lower half: Assembly of two parts (red square and fixed grey square). Upper half: Installation positions
(light red) of the red square as x;,x,-parameter set for different levels of integration: a) x;,Xx,-parameter space, b) combi-
natorial possible installation positions, c¢) technical meaningful installation positions (no intersection), d) optimal instal-

lation position. The different parameter sets have different mathematical dimensions [18].

It has been shown in [18] that in a sequential engineering process, where components and sub-
systems are integrated stepwise, the preferred order is given by the mathematical dimensions of the
parameter sets that have to be combined. These parameter sets are not restricted to geometrical pa-
rameters as in figure 18. The concept also applies to the non-geometric parameters of the compo-
nents and systems which must be matched and integrated with one another. This can be applied to
the example in figure 18. The grey box has a fixed position and the mathematical dimension of its
installation parameter set is therefore zero. The red box, on the other hand, initially has a two-
dimensional parameter set. If the installation of the boxes should now happen sequentially, it makes
no sense to start with the installation of the red box and to position it somewhere within its parame-
ter set, since the probability of having it installed in exactly such a preferably way at the fixed posi-
tion as in column d), goes towards zero. However, if the grey box, with the lower dimensional pa-
rameter set, is first installed, the degrees of freedom of the red box can be used to find a meaningful
installation position in relation to the grey box.

3.6 Design Patterns and Paradigms

In the creation of a graph-based design languages it is possible to adopt design patterns [29]
from object-oriented software engineering [29]. The use of object-oriented design patterns from
software engineering in design languages is made possible by the extension of the design language
classes with methods and interfaces proposed in [30]. With this extension the design languages are
adopting central elements of object-oriented software engineering. The design patterns are solutions
for recurring kind of problems in programming as for object creation, object composition (structur-
al) and for object interaction (communication). They are typically made of two or more classes that
are associated with each other and/or inherit behavior from each other, together with abstract meth-
ods in the classes and/or interfaces and a defined interplay and usage of these methods to solve a
specific problem.

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 341

HpoeKmupoeaHue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

Figure 19 shows two patterns that are used in design grammars. The builder pattern on the top
can be used within the design compilers plugin mechanism. The abstract information to trigger a
process chain is extracted from the central model by a translator class. An engineering simulation
application is set by calling the corresponding method of the translator class to select the application
which shall be executed in the plugin. For example, it is possible to switch between different simu-
lation programs, using the builder pattern shown, without having to change anything in the design
language. The information needed to run a simulation is stored abstractly in the central data model
[30, 31]. The lower part of figure 19 shows the composite pattern which is used to model a systems-
of-systems relation that is the basic structure of all systems engineering activities where a system
itself is made up of further systems or of components on the lowest level. The pattern provides
methods to add and remove subsystems and components as well as to call operations or actions on
all system elements in a recursive manner.

£ simulationModelTranslator «Interface»
SimulationApplication

calls
@ + translateCentralModel(centralDataModel) -
i + executeSimulationModel() —\—)Q + createSimulationModel(simulationData)

+ setApplication(simulationApplication simulation data extracted from |

hd PP (PP) central data model by translator
AN

§ Q ConcreteApplication0 Q ConcreteApplicationl g ConcreteApplication2

&

3 @ + createSimulationModell...) @ + createSimulationModell...) @& + createSimulationModell...)

3

3

I NN NN NN NN N NN NN NN NN NN I NN I NN EN NN NN I NN EN NN NN EN NN NN NN NN NN NN NN NN NN NN NN NN NN EENEEEREEEE

c

§ El system «Interface»

E Operation

] @ + getChildren():List<System> | ----~""" ™

% | this.call() AN @ + addchild(system) @& +call)

Q | for(System s : this.getChildren()) @ + removechild(system)

g { @ + calloperation(operation)

v s.callOperation(operation)

i I

Q Component Q Subsystem

@ + calloperation(...) @ + getcChildren(...)
& + addchild(...)

& + removechild(...)
@ + calloperation(...)

Figure 19 — Two design patterns from object-oriented software engineering [29]. Top: Builder pattern for calling differ-
ent applications in a engineering plugin that shares a common central model. Bottom: Composite pattern for modeling a
system-of-systems relation in systems engineering [30]

The ‘Design for X’ paradigms [10], mentioned above in the philosophical motivation, can also be
seen as a kind of design pattern. As these paradigms are less specific than the previously presented
design patterns from object-oriented software engineering they are part of the ‘ability’ concept area.
This paradigms help the designer to structure the design process, at least mentally, when designing
a graph-based design language. Nevertheless, it is often possible to transform the less specific para-
digms in to rule-based heuristics when implementing a design language.

342 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

4 Discussion

In this paper an overview on graph-based design languages was given. The method allows a
graphical programming of design processes that helps to manage the complexity in modern product
design. The data model is separated from the operational procedural aspects in an object-oriented
way. The object-oriented UML modeling language is used for an open, re-useable, compact and
non-proprietary knowledge representation of the product entities and design process. Modeling re-
dundancy is avoided through inheritance between classes and decomposition into classes, modules
and plugins. Storing engineering knowledge in incremental rules and adaptive rule sequences al-
lows a hierarchical decomposition of the engineering process itself into smaller chunks that can be
more easily captured and overviewed by the engineer even for complex products and systems. This
approach allows an easy reuse of knowledge in further design languages as external classes and
packages can be easily loaded. The design languages are preferably used to automate recurring de-
sign tasks as the implementation of a design language in the design compiler takes some upfront
effort.

The presented example applications show that the method of graph-based design languages is
able to solve substantial real-world engineering problems in a fraction of the time that would be
necessary in manual engineering. In fact, the design time collapses to the addition of the (potentially
concurrent) run-times of the algorithms which is close to the lower theoretical limit. Furthermore, it
is our observation that a graph-based design language, when embedded in an optimization frame-
work, is often able to find more optimal engineering solutions as can be found in a conventional
manual engineering process. The presented language is able to capture engineering knowledge digi-
tally which leads to a highly scalable and re-executable digital blueprint of recurring design tasks.
When executing design languages in optimization or DoE runs on HPC or cloud infrastructure, the
available hardware power becomes the only limiting factor in accelerating the design tasks. The
practical execution of optimizations with design languages on HPC environments shows that new
challenges and questions arise from the resulting flood of results: How are result outliers to be treat-
ed and how are they caused? How can structures in the results be interpreted? Are these structures
caused by properties of the design language or by the physics of the problem? Can generally valid
technological laws be derived from this? Nevertheless, a significant upfront invest is necessary as
implementing a product’s generic design process is apparently more expensive than creating a few
product designs by hand. The wide acceptance of this kind of modeling method in industry is at the
moment therefore still often hindered by the traditional ‘silo mentality’ present in today’s compa-
nies which look on the short-term profitability of the individual business unit instead on the mid- or
long-term profitability of the company overall.

The presented design principles provide various patterns, templates and aids to handle the oc-
curring complexity in product design. They can be used on different levels and stages during the
implementation of engineering processes. Some of the shown principles as the design approaches,
generic design patterns and the dimension-based design sequence help to understand the process of
designing itself to simplify the implementation of design languages. Others, as the declarative con-
straint processing and the dimensionless evaluation scheme support an unambiguous evaluation of
products which is a prerequisite for an unbiased optimization of the product itself. At last, design
patterns from software engineering can be reused in design languages due to the close relation of
the design languages and the design compiler with tools from object-oriented software engineering.
All the shown design principles help to handle the complexity in product design. This is an im-
portant task as the complexity of the products themselves is steadily increasing and even more do-
mains and disciplines have to be considered to get a holistic evaluation, validation and optimization
of a product’s life cycle from cradle to grave. In this sense, graph-based design languages have

OHTOJIOTHS IPOEKTUPOBAHMS, TOM 8, Ne3(29)/2018 343

HpoeKmupoeaHue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

shown to be a successful method to push the limits of the still controllable complexity in industrial
engineering further away.

References

Pahl G, Beitz W, Feldhusen J, Grote KH. Engineering Design: A Systematic Approach. Series: Solid mechanics
and its applications, Springer London, 2006.

Kroplin B, Rudolph S. Entwurfsgrammatiken - Ein Paradigmenwechsel? Der Priifingenieur, 26:34-43, 2005.
Antonsson E, Cagan J. Formal Engineering Design Synthesis. Cambridge University Press, 2001.

Borgest NM, Vlasov SA, Gromov AlA, Gromov AnA, Korovin MD, Shustova DV. Robot-designer: on the road to
reality. Ontology of Designing. —2015; 5(4): 429-449. - DOI: 10.18287/2223-9537-2015-5-4-429-449.

Borgest N, Gromov An, Gromov Al, Korovin M. The concept of automation in conventional systems creation
applied to the preliminary aircraft design. In: Wilinski A., et al. (eds.) Soft Computing in Computer and Infor-
mation Science, Part I1. AISC, Springer, 2015; vol. 342: 155-165. — DOI: 10.1007/978-3-319-15147-2_13.

Borgest N, Korovin M. Ontological approach towards semantic data filtering in the interface design applied to the
interface design and dialogue creation for the “robot-aircraft designer” informational system. Advances in Intelli-
gent Systems and Computing. Springer, 2017; vol. 534: 93-101. — DOI: 10.1007/978-3-319-48429-7 9.

Jaroslaw Sobieszczanski-Sobieski, A J Morris, M J L van Tooren. Multidisciplinary Design Optimization Sup-
ported by Knowledge Based Engineering. - Chichester, UK : John Wiley and Sons, 2015.

Muenzer C. Constraint-Based Methods for Automated Computational Design Synthesis of Solution Spaces, ETH
Zuerich, Diss., 2015. - 119 p. - https://www.research-collection.ethz.ch/handle/20.500.11850/113711.

La Rocca, Gianfranco. Knowledge based engineering: Between Al and CAD. Review of a language based tech-
nology to support engineering design. Advanced Engineering Informatics 26 (2012), P.159-179. - DOI:
10.1016/j.a¢i.2012.02.002.

[10] Rudolph S. Ubertragung von Ahnlichkeitsbegriffen. Habilitationsschrift, Universitit Stuttgart, 2002.
[11] Rudolph S. Eine Methodik zur systematischen Bewertung von Konstruktionen. PhD thesis, Universitdt Stuttgart,

1995.
Object Management Group, OMG Unified Modeling Language. www.uml.org. Version: 2014.

] Reichwein A. Application-specific UML Profiles for Multidisciplinary Product Data Integration. PhD thesis, Uni-

versitét Stuttgart, 2011.

[14] Bolling M. Losungspfadbasierte Analysen im Entwurf komplexer Systeme. PhD thesis, Universitit Stuttgart,

2013.

[15] Gross J. Aufbau und Einsatz von Entwurfssprachen zur Auslegung von Satelliten. PhD thesis, Universitét

Stuttgart, 2014.

[16] Rudolph S, Beichter J, Eheim M, Hess S, Motzer M, Weil R. On multi-disciplinary architectural synthesis and

analysis of complex systems with graph-based design languages. In 62. Deutscher Luft- und Raumfahrtkongress
(DGLR 2013), Stuttgart, September 10-12, 2013.

[17] Tonhduser C, Rudolph S. Individual Coffee Maker Design Using Graph-Based Design Languages. In: Gero J.

(eds.) Design Computing and Cognition 16, pp 513-533, 2016. Springer, Cham. — DOI: 10.1007/978-3-319-
44989-0 28.

[18] Vogel S. Uber Ordnungsmechanismen im wissensbasierten Entwurf von SCR-Systemen. PhD thesis, Universitit

Stuttgart, 2016.

[19]1 Hagq M, Rudolph S. A design language for generic space-frame structure design. In: Int. J. Comput. Appl. Tech-

nol., Band 30(1/2): S. 77-87,2007. - DOI: 10.1504/1JCAT.2007.015699.

[20] Arnold P, Rudolph S. Bridging the gap between product design and product manufacturing by means of graph-

based design languages. In: TMCE, 2012.

[21] Vogel S, Rudolph S. Automated Piping with Standardized Bends in Complex Systems Design. In: Proceedings of

the Seventh International Conference on Complex Systems Design & Management, CSD&M Paris, 2016.

[22] Rudolph S, Arnold P, Eheim M, Hess S, Motzer M, Riestenpatt M, Schmidt J, Weil R. Design languages for

multi-disciplinary architectural synthesis and analysis of complex systems in the context of an aircraft cabin, CE-
AS Conference, Toulouse, November 25-27, 2014.

[23] Breckle T, Kiefer J, Rudolph S, Manns M. Engineering of assembly systems using graph -based design lan-

guages, 21st International Conference on Engineering Design (ICED 17), Vancouver, Canada, 21-25.08.2017.

[24] Kiesel M, Klimant P, Beisheim N, Rudolph S, Put; M. Using Graph-based Design Languages to Enhance the

Creation of Virtual Commissioning Models, 27th CIRP Design Conference on Complex Systems Engineering and
Development, 2017. - DOI: 10.1016/j.procir.2017.01.047.

344 N3(29/2018, v.8, Ontology of Designing

C. @ocens, C. Pyoonvgh

[25] Alber R, Rudolph S. A Generic Approach for Engineering Design Grammars. In: AAAI Spring Symposium Tech-
nical Report SS-03-02, March 24-26, 2003.

[26] Buckingham E. On Physically Similar Systems: [llustration of the Use of Dimensional Equations. Phys. Review
4,345-376, 1914. - DOIL: 10.1103/PhysRev.4.345.

[27]1 Bélling M, Rudolph S. Multi-disciplinary airship design using a graph-based design language. In: DGLR
Jahrestagung, Band I, 2005.

[28] Kormeier T, Rudolph S. On self-similarity as a design paradigm. In: Proceedings of IDETC/CIE, International
Design Engineering Technical Conference and Computers and Information in Engineering Conference, September
24-28, 2005.

[29] Gamma E. Design Patterns: Elements of Reusable Object-oriented Software. Pearson Education, 2004 (Addison-
Wesley Professional Computing Series).

[30] Vogel S, Arnold P. Object-orientation in graph-based design grammars. Computing Research Repository,
abs/1712.07204, 2017.

[31]1 Vogel S. An application-independent continuum mechanics interface for virtual engineering, Engineering with
Computers, 2018.

NMPOEKTUPOBAHUE CNOXHbIX CUCTEM NPU NOMOLLUU A3bIKOB
NMPOEKTUPOBAHUA: METOAbI, NTPUMEHEHUE U
NMPUHLUMNDBbI NPOEKTUPOBAHUA

C. ®oreas’, C. Pyzm.an)2

Hnemumym npoexmuposarus camonemos LLmymeapmcerozo ynueepcumema, LlImymeapm, I'epmarus
'Samuel. Peter.Vogel@gmail.com, *Rudolph@ifb.uni-stuttgart.de

AHHOTaUuA

SI3BIKM IPOEKTUPOBAHMsL, OCHOBAaHHbBIE Ha rpadax, MpeacTaBIeHbl Kak crocod npeodpasoBanus HH(oOpManuy, aBToMa-
TH3aLUHU TPOLECCOB MPOEKTHUPOBAHMS M ONTUMM3ALMH MPOAYKTa MM CIOKHOW CHUCTEMBI. YHU(DHUIMPOBAHHBIN SI3BIK
mogenupoBanus (UML) ncronb3yercst uist co31aHMsl SI3bIKa, MOJISIMPYIOIIETro MPOIECcC MPOSKTUPOBAaHUs. SI3bIK Mpo-
EKTUPOBAHUS COCTOHT U3 TEPMUHOJOTHH («IMU(PPOBBIX CTPOUTEIHHBIX OJIOKOB») U Habopa mpaBmi («3HaHUH TH(POBOI
KOMITO3HIIMI») BBITOJHEHHUS TIOCIIEI0BATEILHOCTU JACHCTBHUIT (T.€. MOCIIEI0BATEILHOIO NMpeodpa3oBanus B U(POBOI
BHJI TIpoIiecca MpoekTupoBanus). C HCIOIh30BaHHEM OCHOBAHHOTO Ha TPaBHIIaX METo/Aa co3qaércss 0000MEHHAs 1IeH-
TpaJIbHasl COTJIACOBAaHHAs cXeMa JaHHBIX 00 00BEKTE MPOESKTHPOBAHUS (TaK Ha3bIBaeMbId rpad mpoekrtupoBanus). [1o-
clie TeHepanuy abCTPaKTHOW IEHTPAIbHONH MOJEIH aBTOMATHYECKH TeHEPUPYIOTCS WHXKEHEPHbIE MOJICIH, OTPaXaro-
mpe crenrnuKy KOHKPETHOH MpeIMeTHON 00lacTH, W Mocjie YAajaEHHOIO BBIMOJHEHHS MX PE3yJbTaThl BHOCSTCS B
HCHTPAJIBbHYIO MOJCIIb NPOCKTUPOBAHUA NJIA IPUHATUA MMOCICAYIOIUX MPOCKTHBIX peHleHI/lﬁ 501040 0HTHMI/I33L[I/II>1. S3p1KHN
IMPOCKTUPOBAHUA MOACIUPYIOTCA BPYUHYIO U aBTOMATHUYCCKU BBINOJIHAKOTCA B TaK Ha3bIBACMOM KOMITHJIATOPE MPOCK-
TUpOBaHUs. SI3BIKM MPOSKTHPOBAHMUS, OCHOBaHHbBIE Ha Trpadax, yCHEUIHO MPUMEHSIOTCS IPU CO3aHUH Pa3HOOOpa3HbIX
M3JIETMH a9POKOCMUYECKON (KOCMHYECKHE arapaThl, CaMOJIeThl), aBBTOMOOMIIBHON (IIPOCTPAHCTBEHHBIE KOHCTPYKIIUH,
KaOMHBI aBTOMOOMJICH), MAaIIMHOCTPOUTENHHON (poOOTHI, IM(POBBIE NPOU3BOJCTBA) OTpPACieH M MOTPEOMTEIILCKUX
TOBapoB (KO(e-MalINHBI, BBITSKHBIE CUCTEMBI) JUIS TOBBILICHUS 3((QEKTUBHOCTHU IIPOLIECCca MPOSKTUPOBAHUS U CTEIe-
HU €ro aBTOMAaTH3alui. PaccMOTPEHbI pa3invHble CTPATETUH U MEXAHU3MbI IIPOESKTHPOBAHMUS C IIEJIBI0 MPUMEHEHUS UX
K aBTOMATH3allMK [poLecca MPOeKTUpoBaHus. MCmoab3y0Tes MOAX0/Ibl, HAUWHAS C ABTOMATU3UPOBAHHOM U JeKiapa-
TUBHOI 00pabOTKH OrpaHUYeHUid, (PpaKkTaNIbHBIX BIOXKEHHBIX IA0JIOHOB IPOSKTUPOBAHUS 10 MATEMAaTHYECKOTO OIpe-
JICTICHUSI TIOCIIE/IOBATENILHOCTH JICHCTBUI MPOEKTUPOBaHus. MIMerolecs: 3HaHUsT ONPEACIISIIOT OOIIYI0 CTPATET IO MIPO-
eKTUPOBAHMIO (T.e. HUCXOMAIIEE WU BOCXOJsmiee NpoekTupoBanne). C IENbl0 CHIKEHHUS Pa3MEpPHOCTH M OOIIei
CJIOKHOCTH 331a4M MCIOJIb3YeTCsl OCTPOeHHE Oe3pa3MepHbIX WHBAPHAHTOB Ha OCHOBE Teopuu moxobus. 111abiaoHbr
NPOEKTUPOBAHMSI, TIAPaUTMbI IIPOEKTHpOBaHus (T. €. hopma cienyer 3a GyHKIHMEH Wi QyHKIHUS clieayeT 3a GopMOii)
U CTpaTeruu MpOeKTHPOBaHuUs (pa3Jessiii U BIacTBYH) U3 MH(POPMATHKU IIUPOKO HUCIOJIB3YIOTCS Ul CTPYKTYpUpPOBa-
HUSI 1 YIPaABJICHUS CJIOXKHOCTBIO ITPOEKTA.

Knrwuesvie cnosa: sazvixku NpPoOeKmupoearus, asmomamusayust nNPpoOeKmupoearus, Memoo npoekmupoedarus, npuHyunsvl
npoeKmupoearus, OHKmMo02cusl nPpoOeKmupoBaHusl.

OHTOJIOTHSI MPOEKTUPOBAHUS, TOM 8, %3(29)/2018 345

HpoeKmupoeaHue CJLOJCHBIX cucmem npu noOMowu A3blKO6 NPOEKMUpPOBAHUsL ...

CBepeHuns o6 aBTopax

Dr. Samuel Vogel (b. 1982) is currently external habilitation candidate in the group of similarity
mechanics at the Institute of Aircraft Design at the University of Stuttgart. He is currently work-
ing at MTU Friedrichshafen GmbH (subsidiary of Rolls Royce Holding plc) in the research and
technology development. Samuel Vogel studied physics at the University of Stuttgart and fin-
ished in 2007. After that he worked for five years at a development service provider as team
lead and head of the department “Predevelopment, Methods and Analytics”. In 2013, he moved
to his current position at MTU. Between 2009 and 2015, Samuel Vogel did in parallel his doc-
torate on the automated design of exhaust systems with design languages in Stephan Rudolph's
group. From 2016 to 2018 he also did research in the same research group as a postdoctoral
student in part time. His research interests include the interplay between the (automated) design
process and complex systems science as well as design optimization with design languages
especially in conjunction with computational fluid dynamics. Automated 3D CAD model and geometry creation for
autonomous optimization and validation workflows are also an important research interest of Samuel Vogel.

M-p Camiosne Dozens (1982 r.p.) B HacTOsIIEE BPEMs SIBISICTCS KaHAUIATOM HAa BHEIIHIOK XaOWIMTALUIO B TPYIIIE
MeXaHMKH nonobust B MHcTHTYTE mpoekTtupoBanusi camoiieroB LlTyrraprckoro yHuepcutera u pabdoraer B MTU
Friedrichshafen GmbH (nouepnsisi komnanust Rolls Royce Holding plc). Camroans ®orens oxonumn IltyTraprekuii
yauBepcuteT B 2007 rofy, mocie 3TOro Itk JeT paboTan B KauecTBE PYKOBOAUTENS KOMaH/bl U HAYaIbHUKA OT/ACNA
«[IpenBapurenpHas paspaboTka, MeTObl U aHanuTHKa». B 2013 roxy oH nepemén Ha CBOK HBIHEIIHIOK J0KHOCTD B
MTU. B nepuon ¢ 2009 mo 2015 roxsr Camyasns @orens mapamiensHO BRITIOTHIII CBOIO JOKTOPCKYIO paboTy IO aBTO-
MaTHU3HUPOBAHHOMY IIPOCKTUPOBAHHUIO BBIXJIOIHBIX CHCTEM C HCIIOJIb30BaHHEM A3bIKOB NMPOSKTHPOBaHHs B rpymme Cre-
¢ana Pynosnbda. C 2016 no 2018 ropl OH HPOBOIKIT HCCIIEAOBAHUS B TOI JK€ MCCIIEIOBATEILCKOM IPyIIe B Ka4ecTBe
NOCTAOKTOpaHTa. Ero mccienoBaTenbCKHe HHTEPECHl BKIIOYAIOT B3aHMMOAECHCTBHE MEXIY (QBTOMATH3HMPOBAHHBIM)
IPOLIECCOM NPOESKTUPOBAHUS M TEOPHEHl CIOKHBIX CHCTEM, a TAKXKe ONTHMH3alUel IPOSKTUPOBAHUS C UCIIOIb30BaHHU-
eM fA3BIKOB IpOeKTHpoBaHusA. ABTomatusupoBaHHoe 3D-monenupoBanue B CAIIP u cozgaHue reomerpun Juis aBTO-
HOMHBIX NPONIECCOB ONITUMU3AINU U BaAIUAAIIUHN SABJIAIOTCA BAXKHBIM UCCIICI0BATCILCKUM UHTCPECOM CaMy3Hﬂ doremns.
PD Dr. Stephan Rudolph (b. 1961) is currently head of similarity mechanics group at the
Institute of Aircraft Design at the University of Stuttgart. Stephan Rudolph studied, earned his
doctorate and habilitated at the Faculty of Aerospace Engineering and Geodesy at the Universi-
ty of Stuttgart. Additional one-year study visits at a French Grande Ecole for Aerospace (EN-
SICA) in Toulouse, France, and at the Massachusetts Institute of Technology (MIT) in Cam-
bridge, USA. After obtaining his PhD in 1995 from the University of Stuttgart, he spent six
months as a PostDoc in the Systems and Design Group at the MIT. Habilitation and Lecturer in
the field of "Design Methodology" at the Faculty of Aerospace Engineering and Geodesy at the
University of Stuttgart in 2002. Head of the research group "Similarity Mechanics" since 1996.
Dr. Rudolph's research interests include formal methods of Model-Based System Engineering
(MBSE) and formal design synthesis with graph-based design languages, automatic model generation and design evalu-
ation methods as well as applications of similarity mechanics in engineering and artificial intelligence. Within the focus
of graph-based design languages, the theoretical focus is on questions of uniqueness, consistency, validation and verifi-
cation of design languages, as well as the practical focus on the language development of graph-based design languages
for automatic product design of satellites, aircraft, vehicle structures and their digital factories.

-p Cmegan Pyoonwvgh (1961 r.p.) BO3rIaBiseT TpyIITy MEXaHUKA OM00Ms B IHCTHTYTE MPOSKTHPOBAHHS CaMOJICTOB
Ityrraprckoro yauBepcureta. Credan Pymonbd) ydnics u momydmit JOKTOPCKYIO CTETIeHb Ha (haKyJIbTeTe a’poOKOC-
Mu4eckoil TexHuku u reogesnn Lltyrraprekoro yansepcurera (1995). [Tomyuus crenens PhD, mpomén ctaxupoBKu B
Bricmeit mxone aspoxocmuueckoi TexHukd (ENSICA) B Tymyse (PpaHimst) n B TEUCHHE ITIECTH MECSIIEB B KAYECTBE
MOCTAOKTOpa B Tpymne « CHCTeMBI B MTPOeKTHPOBaHUEe» MaccadyceTckoro Texnonoruaeckoro naerutyta (MIT) B Kem-
opumke (CILIA). B 2002 roay nonyuun XaOMINTALMIO KaK JOKTOP U JIEKTOP B 00JACTH METOMOJIOTHSI POSKTHPOBAHMUS
Ha (akyJbTeTe adpOKOCMHUYECKOH TeXHUKH U reonesuu B llTyTraprckoro yHuBepcurera. PykoBomurens uccienoBa-
TEJILCKOW TPYIITbI MEXaHUKH noaoous ¢ 1996 roxa. Hayunele untepech goktopa Pynonbda BkiIrouaroT GpopmaiibHbIe
METO/Ibl CUCTEMHOT'O MH)KMHUpPUHra Ha ocHoBe Mozelneit (MBSE) n gopmanbHOe NpoeKTHPOBaHMS C HCIOJIB30BAHUEM
SI3bIKOB, OCHOBAHHBIX Ha Tpadax, aBTOMATHYECKOE CO3IAaHUE U OLICHKHU MTPOCKTHBIX MOJIETICH ¢ MPUMEHEHHEM MEXaHUKH
nogo0Ks B MPOCKTHPOBAHUM M MCKYCCTBEHHOTO HHTEIUICKTa. B sI3bIKax MpPOSKTHPOBAHUs, OCHOBAaHHBIX Ha rpadax,
HauOONbLIMI MHTEpeC Ui AoKTopa Pynonbda B TeopeTHueckoM acleKTe MpeICTaBISIFOT BONPOCHI YHHUKAJIbHOCTH,
COTJIACOBAHHOCTH, BAMAALNN W TIPOBEPKH S3BIKOB MPOCKTHPOBaHUSA. HanOoOmpImii mpakTHYECKU HHTEpEC B ITOH
00JacTy MpeacTaBIsAeT pa3padoTKa S3BIKOB IPOCKTUPOBAHUS, OCHOBAHHBIX Ha rpadax, KOTOphIe ObI MO3BOJIMIN aBTO-
MaTHU3UPOBAThH NMPOCKTHPOBAHME KOCMHYECKUX aIlllapaToB, CaMOJIETOB, KOHCTPYKIMI MalIMH U MX LU(POBBIX MPOU3-
BOJICTB.

346 N3(29/2018, v.8, Ontology of Designing

