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Abstract 
It is well known that expert knowledge is very important for solving design problems. However, expert 
knowledge is not easy to describe in precise terms, since experts often use imprecise (“fuzzy”) words 
from natural language such as “small” or “large”. In order to describe such knowledge in precise terms – 
which would be understandable to a computer – Lotfi Zadeh came up with a special methodology that he 
called fuzzy. This methodology had many successful applications, in particular, applications to design. 
The first stage of the general fuzzy methodology is eliciting, from the expert, a membership function cor-
responding to each imprecise term, i.e., a function that assigns, to each possible value of the correspond-
ing quantity, a degree to which this value satisfies this property (e.g., a degree to which, in the expert's 
opinion, this given value is small). If we follow the expert's opinion very closely, we often come up with 
very complex membership functions. However, surprisingly, in many applications, the simplest member-
ship functions - of triangular or trapezoid shape - turned out to be more efficient than the supposedly 
more adequate complex ones. This is counterintuitive: the closer we follow the expert’s opinion, the 
worse our result. Some explanations for this seemingly counterintuitive phenomenon have been proposed 
earlier. However, these explanations only work when we use the simplest possible “and”-operation – min-
imum, while this phenomenon has been observed for other “and”-operations as well. In this paper, we 
provide a new, more general explanation for the above phenomenon, an explanation that works for all 
possible “and”-operations. 

Key words: expert knowledge, fuzzy methodology, complicated membership functions, trapezoid member-
ship functions, triangular membership functions. 
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Introduction 
For engineering design, expert knowledge is often important. In many engineering design prob-

lems, it is often very important to take into account the opinion of the human experts.  
Expert knowledge is not easy to take into account. Taking into account expert’s knowledge is 

not always easy, since experts often formulate their knowledge not in precise computer-
understandable terms, but by using imprecise (fuzzy) words from natural language such as “small”, 
“approximately”, “close”, etc. To take imprecise expert knowledge into account, Lotfi Zadeh came 
up with special fuzzy techniques [1-6]. 

1 First stage of fuzzy methodology: eliciting membership functions.  
In the fuzzy approach, first, we describe the meaning of the corresponding natural-language 

words in precise numerical terms. For this purpose, for each such word (e.g., for the word “small”): 
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 We provide the expert with several possible values x of the corresponding quantity,  
 For each of these values, we ask the expert to mark a point, on a scale from 0 to 1, to what ex-

tent the given value satisfies this property (e.g., to what extent this value is small).  
The resulting points   ( )        corresponding to different values   form what is called a mem-
bership function or a fuzzy set describing the corresponding natural-language property P. 

2 Second stage of fuzzy methodology: combining membership degrees 
An additional problem stems from the fact that many expert rules have several conditions: e.g., 

“if the road will have heavy traffic and the region experiences drastic changes from freezing to 
thawing, then the road pavement must be made reasonably resilient to such changes.” The condition 
to this rule contains two imprecise natural-language words: “heavy” and “drastic”. In the ideal 
world,  
 In addition to asking the experts for all possible values of       ( ) and         ( ),  
 we should also ask, for all possible combinations of traffic   and temperature change  , to what 

extent the above condition is satisfied for the corresponding pair (   )  
However, in practice, already asking the expert about all possible values of one quantity takes a 

long time. So, asking the expert about all possible pairs is not realistically possible. 
Since we cannot elicit, from the expert, the degree to which each pair satisfies the correspond-

ing condition, we must therefore estimate this degree based on what we know, i.e., on the degrees to 
which the traffic is heavy and to which the temperature change is drastic. In general, we know the 
degrees   and   to which imprecise statements   and   are true, and based on these degrees, we 
need to estimate the degree to which the “and”-combination   &   is true. Let us denote the corre-
sponding estimate by   (   )  

The algorithm that computes these estimates based on the two given degrees is known as an 
“and”-operation or a t-norm. The t-norm has to satisfy several reasonable properties. For example, 
since       means the same as      , we expect that the estimates for these two “and”-
combinations should be the same, i.e., that   (   )    (   ) for all   and  .  

Similarly, since     (     ) and (     )     mean the same, we expect that the resulting es-
timates are equal, i.e., that   (    (   ))    (  (   )  ) for all  ,  , and  . 

All t-norms that satisfy all these properties are known. The most widely used “and”-operations 
are   (   )     (   ) and   (   )      , but many other operations are also used. 

3 Triangular and trapezoid membership functions are usually very efficient 
In principle, if we ask an expert, we can get different shapes of membership functions. In the 

beginning, practitioners tried to describe these membership functions as accurately as possible. 
However, it soon turned out that in most applications, it is sufficient to consider simple membership 
functions whose graphs have triangular or trapezoid shape (See Figure 1). 

To be more precise, triangular membership functions are the following functions which are dif-
ferent from   on an interval       with midpoint  ̃: 
 they linearly increase from   to   when   is smaller than the midpoint  ̃ and then  
 they linearly decrease from   to   when   is larger than the midpoint  ̃. 
 In precise terms: 

  ( )         
  ̃       when      ̃ 

  ( )         
       ̃  when  ̃      

  ( )     when      and or when    . 



255Онтология проектирования, том 9, №2(32)/2019

А. Голами, О. Кошелева, В. Крейнович
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 For each of these values, we ask the expert to mark a point, on a scale from 0 to 1, to what ex-

tent the given value satisfies this property (e.g., to what extent this value is small).  
The resulting points   ( )        corresponding to different values   form what is called a mem-
bership function or a fuzzy set describing the corresponding natural-language property P. 

2 Second stage of fuzzy methodology: combining membership degrees 
An additional problem stems from the fact that many expert rules have several conditions: e.g., 

“if the road will have heavy traffic and the region experiences drastic changes from freezing to 
thawing, then the road pavement must be made reasonably resilient to such changes.” The condition 
to this rule contains two imprecise natural-language words: “heavy” and “drastic”. In the ideal 
world,  
 In addition to asking the experts for all possible values of       ( ) and         ( ),  
 we should also ask, for all possible combinations of traffic   and temperature change  , to what 

extent the above condition is satisfied for the corresponding pair (   )  
However, in practice, already asking the expert about all possible values of one quantity takes a 

long time. So, asking the expert about all possible pairs is not realistically possible. 
Since we cannot elicit, from the expert, the degree to which each pair satisfies the correspond-

ing condition, we must therefore estimate this degree based on what we know, i.e., on the degrees to 
which the traffic is heavy and to which the temperature change is drastic. In general, we know the 
degrees   and   to which imprecise statements   and   are true, and based on these degrees, we 
need to estimate the degree to which the “and”-combination   &   is true. Let us denote the corre-
sponding estimate by   (   )  

The algorithm that computes these estimates based on the two given degrees is known as an 
“and”-operation or a t-norm. The t-norm has to satisfy several reasonable properties. For example, 
since       means the same as      , we expect that the estimates for these two “and”-
combinations should be the same, i.e., that   (   )    (   ) for all   and  .  

Similarly, since     (     ) and (     )     mean the same, we expect that the resulting es-
timates are equal, i.e., that   (    (   ))    (  (   )  ) for all  ,  , and  . 

All t-norms that satisfy all these properties are known. The most widely used “and”-operations 
are   (   )     (   ) and   (   )      , but many other operations are also used. 

3 Triangular and trapezoid membership functions are usually very efficient 
In principle, if we ask an expert, we can get different shapes of membership functions. In the 

beginning, practitioners tried to describe these membership functions as accurately as possible. 
However, it soon turned out that in most applications, it is sufficient to consider simple membership 
functions whose graphs have triangular or trapezoid shape (See Figure 1). 

To be more precise, triangular membership functions are the following functions which are dif-
ferent from   on an interval       with midpoint  ̃: 
 they linearly increase from   to   when   is smaller than the midpoint  ̃ and then  
 they linearly decrease from   to   when   is larger than the midpoint  ̃. 
 In precise terms: 

  ( )         
  ̃       when      ̃ 

  ( )         
       ̃  when  ̃      

  ( )     when      and or when    . 

 

Trapezoid membership functions also have an inter-
val in the middle when the function is identically equal to 
1. To be more precise, we select four values       
  and then we take: 
  ( )               
  ( )         

        when       
  ( )                 
  ( )         

         when       
  ( )              

 
Open problem: why are these membership functions 

efficient? While empirical evidence shows that triangular 
and trapezoid membership functions are efficient in many 
engineering applications, there is still no convincing gen-
eral explanation for this empirical efficiency.  

A partial explanation was provided in [7], but this 
explanation is only valid when we use a minimum t-
norm. In this paper, we show that a similar explanation 
can be made general by extending it to general “and”-
operations. 

4 Main idea behind known partial explanation: a brief reminder 
To explain this main idea, let us recall, in some detail how membership functions are usually 

elicited. 
Elicitation of membership functions: first step. Usually, for each property, there is a threshold   

below which, according to the expert, the corresponding property is definitely not satisfied. For ex-
ample, experts may have different opinions on what constitutes warm, but for every expert, there is 
a temperature below which it is clearly not warm. For some people from the North, this threshold 
may be 14 C, for people from the tropics, even 19 C may be chilly, so for them it will be around 
22 C, but there is such threshold for every expert.  

In precise terms, this means that  ( )             .  
Elicitation of membership functions: second step. Similarly, there exists a threshold   above 

which the corresponding property is definitely not satisfied. This means that  ( )            
 . 

Elicitation of membership functions: third step. There also usually exist values for which the 
corresponding property is definitely satisfied. For example, for “warm”, most people will agree that 
25 C is warm.  

Sometimes, there is a single value  ̃ for which the original property is definitely satisfied. 
Sometimes, there is a whole interval of values        for all of which the given property is definitely 
satisfied. For all such values  , we have  ( )   . 

Elicitation of membership functions: fourth step. For the intervals [   ̃] and   ̃    (or, alterna-
tively,       and,       ), the membership degrees change from   to   and then from   to  . These 
are the values that we need to elicit from the expert. 

For each of the intervals, to elicit these values, we provide the expert with several values  
                   

 
Figure1 - Graphs of membership functions 

have triangular or trapezoid shape 



256 №2(32)/2019, v.9, Ontology of Designing

Как объяснить эффективность треугольных и трапециевидных функций принадлежности ...

 

from the corresponding interval - where    and    are the interval's endpoints - and elicit the corre-
sponding membership degrees     (  ) for          (the values    and    corresponding to 
endpoints are known). Usually, the values    are equally spaced:              , so that 
         , where we denoted        .  

Main idea behind the known (partial) explanation of the effectiveness of triangular and trape-
zoid membership functions. When the value    is close to the value   (    ), we do not expect 
that the expert's degree of confidence  (  ) that   satisfies the given property to be much different 
from the expert's degree of confidence  ( ) that the original value   satisfies this property: we 
should have  ( )   (  ). For example: if   is reasonably small, and    is close to  , then it is rea-
sonable to conclude that    should also be reasonably small - with almost the same degree of small-
ness as  . 

In other words, if   and    are close, then the values  ( ) and  (  ) should also be close. For 
large  , the differences between      and    are small, so      is close to   . Thus, we conclude that 
for every  , the values      and    should be close.  

The more this property is satisfied, the more it is reasonable that the values    adequately de-
scribe the expert's knowledge. It thus makes sense to select the values    that satisfy the above 
property to the largest possible degree. In precise terms: for each possible sequence of the values 
  , we can find the degree to which the above property is satisfied, and then as the most adequate 
description of the expert's knowledge, we select the values    for which this degree is the largest 
possible.  

How can we describe this degree? What does it mean that two values      and    are close? In-
tuitively, it means that the absolute value of their difference           is small. Let  ( ) denote 
the membership function corresponding to “small”. Then, for each   the degree to which    and      
are close is equal to  (         ), and the degree to which this closeness condition is satisfied for 
    and for    , etc., is equal to  

(1)   ( (       )  (       )    (         ))  
for an appropriate “and”-operation   (   ).  

We must find the values           for which the expression (1) attains the largest possible 
value.  

5 Analysis of the problem and the resulting justification 
It is reasonable to expect that this optimization problem has a unique solution. In engineering 

problems, in principle, we may have optimality criteria that allow many different solutions. For the 
same problem, we have several solutions which are equally good according to the selected criterion. 
However, from the practical viewpoint, this means that the corresponding criterion is not final.  

For example, if we have several plane designs with similar energy consumption and similar 
manufacturing and exploitation costs, this means that we can select, among these designs, the one 
with the smallest negative effect on the environment - and thus narrow down the set of all optimal 
designs. Eventually, we will end up with a final optimality criterion for which exactly one alterna-
tive is optimal. From this viewpoint, it is reasonable to require that our criterion (1) is, in this sense, 
final - i.e., that it leads to the unique selection of the corresponding membership degrees     

Let us describe this requirement in precise terms.  
Definition 1 

 By a membership function, we will (as usual) mean a mapping  ( ) from real numbers to the 
interval      . 

 By an n-aggregation operation, we mean a function  (       ) of   variables          with 
values from       which is symmetric, i.e., for which:  
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How can we describe this degree? What does it mean that two values      and    are close? In-
tuitively, it means that the absolute value of their difference           is small. Let  ( ) denote 
the membership function corresponding to “small”. Then, for each   the degree to which    and      
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 (       )    (  ( )     ( )) 
for all    and for any permutation  . 

 We say that a pair ⟨    ⟩, where    is an n-aggregation operation and   is a membership func-
tion, is final for increasing sequences if there exists exactly one sequence of values      
              for which the expression (1) attains its largest possible value. The 
corresponding sequence    will be called the optimal increasing sequence.  
Proposition 1 
For every pair ⟨    ⟩ which is final for increasing sequences, the optimal increasing sequence 

has the form    
 
 . 

Comments 
 For reader's convenience, the proof is given in the special (last) Proofs section.  
 According to this result, for the optimal increasing section of the membership function,  

we have  (  )   (      )     
 
   Let us describe  (  ) in terms of      

From            ,we conclude that        
 , thus  (  )  

     
   , i.e.,  (  )         where    

    and 
     

   . So, the optimal membership function  ( ) on the interval     ̃  is a linear function that takes the value 
  for    , and the value   for    ̃, thus,  ( )     

 ̃  . This is exactly the increasing linear segment that we 
have been trying to explain.  

 Proposition 1 does not require that the n-aggregation operation is minimum - it can be any t-norm. Moreover, we 
do not even require that this operation be a t-norm: we do not require its associativity or monotonicity. So, our re-
sult is even more general than what we wanted.  

 A similar result holds for optimal decreasing sequences. 
Definition 2 
We say that a pair ⟨    ⟩, where    is an n-aggregation operation and   is a membership func-

tion, is final for decreasing sequences if there exists exactly one sequence of values         
          for which the expression (1) attains its largest possible value. The corresponding 
sequence    will be called the optimal decreasing sequence. 

Proposition 2  
For every pair ⟨    ⟩, which is final for decreasing sequences, the optimal decreasing se-

quence has the form      
 
 . 

Comment 
According to this result, for the optimal decreasing section of the membership function, we have  (  )  

 (      )       
 
 . Let us describe  (  ) in terms of     From          , we have        

 , thus  (  )  
       

   ,, i.e.,  (  )        , where     
     and       

   .  
So, the optimal decreasing membership function  ( ) on the interval   ̃     is a linear function that takes the value 

  for    ̃, and the value   for    , thus,  ( )     
   ̃. This is exactly the decreasing linear segment that we have 

been trying to explain.  

6 Proof of Propositions 1 and 2 
It is sufficient to prove Proposition 1, the proof of Proposition 2 is similar.  
Let us prove, by contradiction, that for the optimal increasing sequence   , we have       

       , i.e., that all the differences             are equal to each other.  
Indeed, assume that some of these differences are different, i.e.,          for some    and    . 

Without losing generality, we can assume that       . In this case, we can form the following auxil-
iary sequence    . 
 for     , we take       ;  
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 for     , we take                ;  
 when         , we take        (        );  
 finally, for       , we again take        . 
This sequence is different from the original sequence   , since          and thus, 

                                  . 
On the other hand, the differences               corresponding to the new sequence has the 

following form: 
 for     , we have       ,  
 for     , we have          ;  
 when         , we get       ; 
 for      , we get            ; and  
 for      , we again get       . 

Thus, the new sequence of differences     is obtained from the original sequence of differences 
   by an appropriate permutation π: namely, by a permutation that swaps the indices    and     and 
leaves all the other indices unchanged. Thus, the values  (   )   (           ) are also obtained 
from the values  (  )   (         ) by a similar permutation.  

Since we assumed that the n-aggregation operation is symmetric, i.e., that the result of applying 
this operation does not change if we simply permute the inputs, we thus conclude that  

(2)   ( (         )  (         )    (           ))
    ( (       )  (       )    (         )) 

 

i.e., that the expression (1) attains the same value for both sequences    and    .  
Since we assumed that the sequence    is optimal, this means that for this sequence, the value 

of the expression (1) is the largest possible. Thus, the above equality (2) shows that the value of the 
expression (1) for the new sequence     is also optimal. So, we have two different sequences    and 
    on which the expression (1) attains its maximum – which contradicts to our assumption that the 
pair ⟨    ⟩ is final for increasing sequences.  

This contradiction shows that the differences    cannot be different, so they are all equal: 
          , i.e.,                  

Thus: 
 From     , we conclude that      . 
 From         , we conclude that             . 
 By induction, once we have shown that        , we can conclude that 
                 and thus, that      (   )    . 
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Аннотация 
Хорошо известно, что знания экспертов очень важны для решения задач проектирования. Однако эти знания не 
так просто описать в чѐтких терминах, так как эксперты часто используют нечѐткие слова, такие как „неболь-
шой“ или „большой“. Чтобы описывать такого типа знание в чѐтких терминах – терминах понятных компьюте-
ру - Лотфи Задэ придумал специальную методологию, которую он назвал методологией нечѐтких множеств. 
Эта методология имеет много приложений, в частности в проектировании. Первая стадия этой методологии 
состоит в том, чтобы „извлечь“ из экспертов функции принадлежности соответствующие различным нечѐтким 
терминам. Такая функция сопоставляет каждому возможному значению соответствующей физической величи-
ны число, выражающее - до какой степени это значение удовлетворяет данному свойству (например, до какой 
степени можно сказать, что это значение небольшое). Если попытаться очень точно отразить мнение эксперта, 
то часто получают очень сложную функцию принадлежности. Однако на практике гораздо лучшие результаты 
получаются, когда используются простейшие функции принадлежности: треугольные и трапециевидные. На 
первый взгляд, это противоречит нашей интуиции: чем точнее описывают мнение эксперта, тем хуже получает-
ся результат. Исследователи придумали объяснение этого странного феномена, но это объяснение работает 
только когда для описания логической „и“-операции используется минимум, в то время как этот феномен 
наблюдается и когда используются другие „и“-операции. В настоящей статье приводится новое более общее 
объяснение, которое применимо для всех возможных „и“-операций.  

Ключевые слова: экспертные знания, методология нечётких множеств, сложные функции принадлежности, 
трапециевидные функции принадлежности, треугольные функции принадлежности. 
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