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Abstract

It is well known that expert knowledge is very important for solving design problems. However, expert
knowledge is not easy to describe in precise terms, since experts often use imprecise (“fuzzy”) words
from natural language such as “small” or “large”. In order to describe such knowledge in precise terms —
which would be understandable to a computer — Lotfi Zadeh came up with a special methodology that he
called fuzzy. This methodology had many successful applications, in particular, applications to design.
The first stage of the general fuzzy methodology is eliciting, from the expert, a membership function cor-
responding to each imprecise term, i.e., a function that assigns, to each possible value of the correspond-
ing quantity, a degree to which this value satisfies this property (e.g., a degree to which, in the expert's
opinion, this given value is small). If we follow the expert's opinion very closely, we often come up with
very complex membership functions. However, surprisingly, in many applications, the simplest member-
ship functions - of triangular or trapezoid shape - turned out to be more efficient than the supposedly
more adequate complex ones. This is counterintuitive: the closer we follow the expert’s opinion, the
worse our result. Some explanations for this seemingly counterintuitive phenomenon have been proposed
earlier. However, these explanations only work when we use the simplest possible “and’’-operation — min-
imum, while this phenomenon has been observed for other “and”-operations as well. In this paper, we
provide a new, more general explanation for the above phenomenon, an explanation that works for all
possible “and”-operations.
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Introduction

For engineering design, expert knowledge is often important. In many engineering design prob-
lems, it is often very important to take into account the opinion of the human experts.

Expert knowledge is not easy to take into account. Taking into account expert’s knowledge is
not always easy, since experts often formulate their knowledge not in precise computer-
understandable terms, but by using imprecise (fuzzy) words from natural language such as “small”,

“approximately”, “close”, etc. To take imprecise expert knowledge into account, Lotfi Zadeh came
up with special fuzzy techniques [1-6].

1 First stage of fuzzy methodology: eliciting membership functions.

In the fuzzy approach, first, we describe the meaning of the corresponding natural-language
words in precise numerical terms. For this purpose, for each such word (e.g., for the word “small”):

OHTOJIOTHSI MPOEKTUPOBAHUS, TOM 9, %2(32)/2019 253



Kax obvsichumu s¢hghexmusrnocms mpey2onvHbix u mpaneyue8uoHbIX QYHKYUL NPUHAOTIEHCHOCU ...

=  We provide the expert with several possible values x of the corresponding quantity,

=  For each of these values, we ask the expert to mark a point, on a scale from 0 to 1, to what ex-
tent the given value satisfies this property (e.g., to what extent this value is small).

The resulting points up(x) € [0,1] corresponding to different values x form what is called a mem-

bership function or a fuzzy set describing the corresponding natural-language property P.

2 Second stage of fuzzy methodology: combining membership degrees

An additional problem stems from the fact that many expert rules have several conditions: e.g.,
“if the road will have heavy traffic and the region experiences drastic changes from freezing to
thawing, then the road pavement must be made reasonably resilient to such changes.” The condition
to this rule contains two imprecise natural-language words: “heavy” and “drastic”. In the ideal
world,

* In addition to asking the experts for all possible values of tpeqyy (t) and pgrgstic(€),
= we should also ask, for all possible combinations of traffic t and temperature change c, to what
extent the above condition is satisfied for the corresponding pair (t, ¢).

However, in practice, already asking the expert about all possible values of one quantity takes a
long time. So, asking the expert about all possible pairs is not realistically possible.

Since we cannot elicit, from the expert, the degree to which each pair satisfies the correspond-
ing condition, we must therefore estimate this degree based on what we know, i.c., on the degrees to
which the traffic is heavy and to which the temperature change is drastic. In general, we know the
degrees a and b to which imprecise statements A and B are true, and based on these degrees, we
need to estimate the degree to which the “and”-combination A & B is true. Let us denote the corre-
sponding estimate by fg (a, b).

The algorithm that computes these estimates based on the two given degrees is known as an
“and”-operation or a t-norm. The t-norm has to satisfy several reasonable properties. For example,
since A& B means the same as B & A, we expect that the estimates for these two “and”-
combinations should be the same, i.e., that fg(a, b) = fq (b, a) for all a and b.

Similarly, since A & (B & C) and (A & B) & C mean the same, we expect that the resulting es-
timates are equal, i.e., that fg (a, fs, (b, c)) = fe(fe(a,b),c) forall a, b, and c.

All t-norms that satisfy all these properties are known. The most widely used “and”-operations
are fg(a,b) = min(a, b) and fg(a,b) = a - b, but many other operations are also used.

3 Triangular and trapezoid membership functions are usually very efficient

In principle, if we ask an expert, we can get different shapes of membership functions. In the
beginning, practitioners tried to describe these membership functions as accurately as possible.
However, it soon turned out that in most applications, it is sufficient to consider simple membership
functions whose graphs have triangular or trapezoid shape (See Figure 1).

To be more precise, triangular membership functions are the following functions which are dif-
ferent from O on an interval [x, x] with midpoint X:
= they linearly increase from 0 to 1 when x is smaller than the midpoint X¥ and then
= they linearly decrease from 1 to 0 when x is larger than the midpoint X.
= In precise terms:

. u(x)zx_f whenx <x <%

. ,u(x)zy:;whenfoSE

Rl X

e u(x) =0 whenx < x and or when x > x.
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Trapezoid membership functions also have an inter-
val in the middle when the function is identically equal to u(x)
1. To be more precise, we select four values x <t < t <
x and then we take:
= u(x) =0 whenx <x

. u(x)=% when x < x <

|+

0
* u(x)=1whent<x<t . . - : = *
= u(x) =% whent < x <X
* u(x)=0 whenx >x u(x)
1
Open problem: why are these membership functions
efficient? While empirical evidence shows that triangular
and trapezoid membership functions are efficient in many
engineering applications, there is still no convincing gen-
eral explanation for this empirical efficiency. 0
A partial explanation was provided in [7], but this " - x
x X %

explanation is only valid when we use a minimum t-
norm. In this paper, we show that a similar explanation Figure] - Graphs of membership functions
can be made general by extending it to general “and”- have triangular or trapezoid shape
operations.

4 Main idea behind known partial explanation: a brief reminder

To explain this main idea, let us recall, in some detail how membership functions are usually
elicited.

Elicitation of membership functions: first step. Usually, for each property, there is a threshold x
below which, according to the expert, the corresponding property is definitely not satisfied. For ex-
ample, experts may have different opinions on what constitutes warm, but for every expert, there is
a temperature below which it is clearly not warm. For some people from the North, this threshold
may be 14 C, for people from the tropics, even 19 C may be chilly, so for them it will be around
22 C, but there is such threshold for every expert.

In precise terms, this means that u(x) = 0 when x < x.

Elicitation of membership functions: second step. Similarly, there exists a threshold x above
which the corresponding property is definitely not satisfied. This means that u(x) = 0 when x >
X.

Elicitation of membership functions: third step. There also usually exist values for which the
corresponding property is definitely satisfied. For example, for “warm”, most people will agree that
25 Cis warm.

Sometimes, there is a single value X for which the original property is definitely satisfied.
Sometimes, there is a whole interval of values [t , t] for all of which the given property is definitely
satisfied. For all such values x, we have u(x) = 1.

Elicitation of membership functions: fourth step. For the intervals [g, J?] and [X, x] (or, alterna-

tively, [x, t] and, [t,x]), the membership degrees change from 0 to 1 and then from 1 to 0. These
are the values that we need to elicit from the expert.
For each of the intervals, to elicit these values, we provide the expert with several values
Xo < Xq <Xy <0 < Xpyoq < Xp
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from the corresponding interval - where x, and x,, are the interval's endpoints - and elicit the corre-
sponding membership degrees u; & u(x;) fori =1, ..., x, (the values y, and u,, corresponding to
endpoints are known). Usually, the values x; are equally spaced: x; — xy = x, — x; = -+, so that
Ui = Uo + i - h, where we denoted h & x; — x,.

Main idea behind the known (partial) explanation of the effectiveness of triangular and trape-
zoid membership functions. When the value x’ is close to the value x (x' = x), we do not expect
that the expert's degree of confidence u(x") that x'satisfies the given property to be much different
from the expert's degree of confidence u(x) that the original value x satisfies this property: we
should have u(x) = u(x"). For example: if x is reasonably small, and x’ is close to x, then it is rea-
sonable to conclude that x” should also be reasonably small - with almost the same degree of small-
ness as x.

In other words, if x and x" are close, then the values u(x) and u(x") should also be close. For
large n, the differences between x;_; and x; are small, so x;_4 is close to x;. Thus, we conclude that
for every i, the values u;_; and y; should be close.

The more this property is satisfied, the more it is reasonable that the values y; adequately de-
scribe the expert's knowledge. It thus makes sense to select the values y; that satisfy the above
property to the largest possible degree. In precise terms: for each possible sequence of the values
Ui, we can find the degree to which the above property is satisfied, and then as the most adequate
description of the expert's knowledge, we select the values y; for which this degree is the largest
possible.

How can we describe this degree? What does it mean that two values y;_; and y; are close? In-
tuitively, it means that the absolute value of their difference |u; — p;—1| is small. Let s(v) denote
the membership function corresponding to “small”. Then, for each i the degree to which y; and p;_;
are close is equal to s(|u; — pi—1|), and the degree to which this closeness condition is satisfied for
[ = 1and fori = 2, etc., is equal to

ey fa(sUuy = wol), s(lpz — ual), o) sCptn — -1 ))
for an appropriate “and”-operation fg (a, b).

We must find the values py, ..., u,,—1 for which the expression (1) attains the largest possible
value.

5 Analysis of the problem and the resulting justification

It is reasonable to expect that this optimization problem has a unique solution. In engineering
problems, in principle, we may have optimality criteria that allow many different solutions. For the
same problem, we have several solutions which are equally good according to the selected criterion.
However, from the practical viewpoint, this means that the corresponding criterion is not final.

For example, if we have several plane designs with similar energy consumption and similar
manufacturing and exploitation costs, this means that we can select, among these designs, the one
with the smallest negative effect on the environment - and thus narrow down the set of all optimal
designs. Eventually, we will end up with a final optimality criterion for which exactly one alterna-
tive is optimal. From this viewpoint, it is reasonable to require that our criterion (1) is, in this sense,
final - i.e., that it leads to the unique selection of the corresponding membership degrees ;.

Let us describe this requirement in precise terms.

Definition 1
= By a membership function, we will (as usual) mean a mapping s(v) from real numbers to the

interval [0,1].

» By an n-aggregation operation, we mean a function f(a, ..., a,) of n variables a; € [0,1] with
values from [0,1] which is symmetric, i.e., for which:
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flay, ...,an) = f(arr(l): ---'an(n))
for all a; and for any permutation m.
»  We say that a pair (f, S), where fg, is an n-aggregation operation and s is a membership func-
tion, is final for increasing sequences if there exists exactly one sequence of values py = 0 <
e < py < - < U, =1 for which the expression (1) attains its largest possible value. The
corresponding sequence W; will be called the optimal increasing sequence.
Proposition 1
For every pair (fy, s) which is final for increasing sequences, the optimal increasing sequence

has the form p; = %

Comments
= For reader's convenience, the proof is given in the special (last) Proofs section.
= According to this result, for the optimal increasing section of the membership function,
we have u(x;) = u(xg +i-h) =y = i Let us describe u(x;) in terms of x;.
Xi—Xo Xi—Xo
h nh
b — :—‘;l So, the optimal membership function u(x) on the interval [x, X] is a linear function that takes the value

. 1
ie, u(x;)) =a-x;+ b where a & Eand

From x; = xq + i+ h ,we conclude that i = , thus u(x;) =

0 for x = x, and the value 1 for x = X, thus, u(x) = % This is exactly the increasing linear segment that we

have been trying to explain.

= Proposition 1 does not require that the n-aggregation operation is minimum - it can be any t-norm. Moreover, we
do not even require that this operation be a t-norm: we do not require its associativity or monotonicity. So, our re-
sult is even more general than what we wanted.

= A similar result holds for optimal decreasing sequences.

Definition 2

We say that a pair (fs, S), where fg is an n-aggregation operation and s is a membership func-
tion, is final for decreasing sequences if there exists exactly one sequence of values py =1 > py >
Uy > -+ > p, = 0 for which the expression (1) attains its largest possible value. The corresponding
sequence y; will be called the optimal decreasing sequence.

Proposition 2

For every pair (fg,s), which is final for decreasing sequences, the optimal decreasing se-

quence has the form p; = 1 — %

Comment

According to this result, for the optimal decreasing section of the membership function, we have u(x;) =

ulxg+i-h)y=pu =1- i Let us describe p(x;) in terms of x;. From x; = x4 + i+ h, we have i = %, thus u(x;) =

1 _ Xi—Xq
n-h .
So, the optimal decreasing membership function p(x) on the interval [%, x], is a linear function that takes the value

. 1 X
i€, u(x;) =a-x; +b, where a & - and b ¥ 1 +n—_(;l.

1 for x = X, and the value 0 for x = X, thus, u(x) = % This is exactly the decreasing linear segment that we have
been trying to explain.

6 Proof of Propositions 1 and 2

It is sufficient to prove Proposition 1, the proof of Proposition 2 is similar.

Let us prove, by contradiction, that for the optimal increasing sequence y;, we have py; — o =
Uy — Uq = -+, 1.e., that all the differences A; & p; — y;_41 are equal to each other.

Indeed, assume that some of these differences are different, i.e., A;s# A;r for some i’ and i".
Without losing generality, we can assume that i’ < i"’. In this case, we can form the following auxil-
iary sequence y;.
= fori < i, wetake u; = y;;
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= fori=1i', wetake u; = pyr_q + Ay
»  wheni' <i<i", wetake u; = u; + (A — Apr);
* finally, for i > i", we again take u; = y;.
This sequence is different from the original sequence y;, since A;r# A, and thus,
Hir = Hy—q + D = g+ Dy= g

On the other hand, the differences Aj%f u; — p;_, corresponding to the new sequence has the
following form:
»  fori <i',wehave Aj=A;,
= fori =1, wehave Aly= Ay,
» wheni' <i<i’,wegetAi=A;
= fori=1i",wegetAjn=Aj;and
»  fori>i", weagain get Aj= A;.

Thus, the new sequence of differences A; is obtained from the original sequence of differences
A; by an appropriate permutation 7: namely, by a permutation that swaps the indices i’ and i"" and
leaves all the other indices unchanged. Thus, the values s(A;) = s(|u’; — #'i_1]) are also obtained
from the values s(4;) = s(|u; — pi—1|) by a similar permutation.

Since we assumed that the n-aggregation operation is symmetric, i.e., that the result of applying
this operation does not change if we simply permute the inputs, we thus conclude that

(2) fa (st = pol), sUuz — i), oo sCun = 1))
= fa(sUuz = wol), sUpz = 1), -, sUttn = pn-11))
i.e., that the expression (1) attains the same value for both sequences y; and y;.

Since we assumed that the sequence y; is optimal, this means that for this sequence, the value
of the expression (1) is the largest possible. Thus, the above equality (2) shows that the value of the
expression (1) for the new sequence u'; is also optimal. So, we have two different sequences yu; and
p'; on which the expression (1) attains its maximum — which contradicts to our assumption that the
pair (fg, s) is final for increasing sequences.

This contradiction shows that the differences A; cannot be different, so they are all equal:

A= Dp==Ap,le, ply —fo =y — g =+ =1y
Thus:

=  From py = 0, we conclude that u; = A;.

» From p, — uy; = Ay, we conclude that p, = py + A= 24,.

= By induction, once we have shown that u; = i - A, we can conclude that

Hiz1 = Wi + 1Ay + A, and thus, that y; 1 = (i + 1) - Aq.
=  So, we conclude that y; =i - A, for all i.
= In particular, for i = n, we conclude that y,, = n- A4, hence A= % and thus,

. i
pi =1-A= n
The proposition is proven.
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AHHOTauumA

Xopo110 U3BECTHO, YTO 3HAHUS SKCIIEPTOB OYCHB BaXKHBI JIJIS PEIICHUS 3a1a4 MPpoeKTupoBanus. OIHAKO 3TH 3HAHUS HE
TaK MPOCTO OMUCATh B YETKUX TEPMUHAX, TaK KaK IKCIIEPTHI YaCTO UCIIONB3YIOT HEYETKHE CIIOBa, TAKHUE KAk ,,HEOOIb-
10 WiTH ,,001TBII0H . UTOOBI OTIMCHIBATH TAKOTO TUIIA 3HAHWE B YETKUX TEPMHUHAX — TEPMUHAX MOHSATHBIX KOMITBIOTE-
py - Jlotdu 3amd mpumyman CrenuaTbHYI METOIOJIOTHIO, KOTOPYIO OH Ha3Baj METOMOJIOTHEH HEYETKUX MHOKECTB.
OTa METOHOJIOTHS UMEET MHOTO INPIJIOKCHHUN, B YaCTHOCTH B MPOSKTHPOBAaHWU. [lepBasi cTamust 3TOM METOHOJIOTHU
COCTOHUT B TOM, YTOOBI ,,M3BIICYb " U3 IKCIEPTOB (DYHKIMU MPUHAIIC)KHOCTH COOTBETCTBYIOIIUE PA3IUYHBIM HEYETKUM
TepmuHaM. Takast yHKIHSI COTIOCTABISICT KaXKIOMY BO3MOXKHOMY 3HAUCHHUIO COOTBETCTBYIOIICH (hU3NUYECKON BEIHYIU-
HBI YHCJIO, BBIPAXKAIOIIEE - 10 KAKOH CTCIEHH 3TO 3HAYCHHE YOBJICTBOPSET JAHHOMY CBOMCTBY (HampuMmep, 10 KaKoi
CTENEeHN MOYKHO CKa3aTh, YTO 3TO 3HaUEHHE HEOOJbINOe). ECIu MONBITaThCS OYeHh TOYHO OTPA3HTh MHEHHE JKCIIEpTa,
TO YaCTO TOYYaIOT OUYEHb CIOKHYIO (DYHKINIO PUHAISKHOCTA. OHAKO HA MPAKTHKE TOPA3I0 JIydIIne Pe3yIbTaThl
TTONTYYaroTCs, KOT/Ia MCIIONB3YIOTCS MpOoCTedmre (YHKINH MPHHAMISKHOCTH: TPEYTONbHBIC M TpamnenueBuaabe. Ha
TIEPBEIH B3I, 3TO MPOTUBOPEUNT HAIIICH WHTYUIIMH: YeM TOYHEE ONMCHIBAIOT MHEHHE DKCIIEPTa, TEM XYIXKE ITOJTydaeT-
csi pesynbTar. VccnenoBaTtenu npuayMann OOBSICHEHHE 3TOrO CTpaHHOro ()eHOMEHa, HO 3TO OObsCHEeHHE padoTaeT
TOJIbKO KOTJ/Ia JUIsi OMKCAHHS JIOTHYECKOW ,,U*‘-Omepaliy HMCIOIb3yeTCs] MUHHMYM, B TO BpeMs Kak 3TOT (heHOMEH
HAOJIIOIaeTCsl M KOTJIa MCIOJB3YIOTCS IPYTUe ,, U ‘-omnepaiun. B HacTosIIel cTarhe MPUBOIAMUTCS HOBOE OoJiee olriee
00BsICHEHHE, KOTOPOE MIPUMEHUMO JIJIsl BCEX BO3MOXKHBIX ,,i" -OTepaIuii.

Kntouegvie cnosa: sxcnepmuvle 3HanUsl, MEMOOOIOUSL HEUEMKUX MHONCECME, CIONCHbIE DYHKYUU NPUHAOLEHCHOCTU,
mpaneyuesuonvle GYHKYUU NPUHAONEHCHOCIU, MPeYeobHble PYHKYUU NPUHAOTIEHCHOCTIU.

Humuposanue: I'onamu, A. Kak 00bsicHATD 3()(HEKTHBHOCTH TPEYTOJNBHBIX U TPANCIUEBUIHBIX (YHKIIUH MPUHAIIEHK-
HOCTH B IPHJIOKEHUAX K npoektupoBannio / A. ['omamu, O. Komenesa, B. KpefinoBrnd / OHTONOTHS IPOESKTUPOBAHHS.
—2019.-T.9, Ne2(32). — C.253-260. — DOI: 10.18287/2223-9537-2019-9-2-253-260.
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